Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Réseau de neurones à impulsions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Réseau de neurones à impulsions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Réseau de neurones à impulsions"
Cognard, Ismaël. „Les pulsars radio : 50 ans de découvertes !“ Reflets de la physique, Nr. 59 (September 2018): 26–31. http://dx.doi.org/10.1051/refdp/201859026.
Der volle Inhalt der QuelleLek, S., I. Dimopoulos, M. Derraz und Y. El Ghachtoul. „Modélisation de la relation pluie-débit à l'aide des réseaux de neurones artificiels“. Revue des sciences de l'eau 9, Nr. 3 (12.04.2005): 319–31. http://dx.doi.org/10.7202/705255ar.
Der volle Inhalt der QuelleDo, Trinh-Minh-Tri, und Thierry Artières. „Modèle hybride champ markovien conditionnel et réseau de neurones profond“. Document numérique 14, Nr. 2 (30.08.2011): 11–27. http://dx.doi.org/10.3166/dn.14.2.11-27.
Der volle Inhalt der QuelleMeunier, David, und Hélène Paugam-Moisy. „Simulation d'un amorçage intermodal sur un réseau de neurones impulsionnels“. Revue d'intelligence artificielle 19, Nr. 1-2 (01.04.2005): 375–88. http://dx.doi.org/10.3166/ria.19.375-388.
Der volle Inhalt der QuelleCollin, Antoine, Dorothée James, Coralie Monpert, Sophie Loyer, Pirta Palola, Lisa Wedding und Eric Feunteun. „Modélisation de la bathymétrie par Pléiades Neo en baie de Saint-Malo: transfert radiatif et réseaux de neurones“. Revue Française de Photogrammétrie et de Télédétection 226, Nr. 1 (16.06.2024): 11–19. http://dx.doi.org/10.52638/rfpt.2024.683.
Der volle Inhalt der QuelleVazquez, J., M. Zug, D. Bellefleur, B. Grandjean und O. Scrivener. „Utilisation d'un réseau de neurones pour appliquer le modèle de Muskingum aux réseaux d'assainissement“. Revue des sciences de l'eau 12, Nr. 3 (12.04.2005): 577–95. http://dx.doi.org/10.7202/705367ar.
Der volle Inhalt der QuelleMarcelin, Jean-Luc, und Assad Kallassy. „Approximation de calculs éléments finis par un nouveau réseau de neurones“. Revue Européenne des Éléments Finis 8, Nr. 2 (Januar 1999): 201–27. http://dx.doi.org/10.1080/12506559.1999.10511363.
Der volle Inhalt der QuelleBouazizi, Emna, Roomila Naeck, Daniel D’Amore, Marie-Françoise Mateo, Philippe Arlotto, Michel Grimaldi, Moez Bouchouicha, Fahrat Fnaiech, Nader Fnaiech und Jean-Marc Ginoux. „Modélisation numérique de la fragmentation du sommeil par réseau de neurones artificiels“. Médecine du Sommeil 12, Nr. 1 (Januar 2015): 22–23. http://dx.doi.org/10.1016/j.msom.2015.01.010.
Der volle Inhalt der QuelleBouazizi, E., R. Naeck, D. D’amore, M. F. Matéo, P. Arlotto, M. Grimaldi, M. Bouchouicha, F. Fnaiech, N. Fnaiech und J. M. Ginoux. „Modélisation numérique de la fragmentation du sommeil par Réseau de neurones artificiels“. Revue des Maladies Respiratoires 32 (Januar 2015): A210. http://dx.doi.org/10.1016/j.rmr.2014.10.305.
Der volle Inhalt der QuelleLaurent, R., J. Henriet, M. Salomon, M. Sauget, F. Nguyen, R. Gschwind und L. Makovicka. „Utilisation d’un réseau de neurones artificiels pour la simulation des mouvements pulmonaires“. Cancer/Radiothérapie 15, Nr. 2 (April 2011): 123–29. http://dx.doi.org/10.1016/j.canrad.2010.07.636.
Der volle Inhalt der QuelleDissertationen zum Thema "Réseau de neurones à impulsions"
Soula, Hédi. „Dynamique et plasticité dans les réseaux de neurones à impulsions : étude du couplage temporel réseau / agent / environnement“. Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0056/these.pdf.
Der volle Inhalt der QuelleAn «artificial life » approach is conducted in order to assess the neural basis of behaviours. Behaviour is the consequence of a good concordance between the controller, the agent’s sensori-motors capabilities and the environment. Within a dynamical system paradigm, behaviours are viewed as attractors in the perception/action space – derived from the composition of the internal and external dynamics. Since internal dynamics is originated by the neural dynamics, learning behaviours therefore consists on coupling external and internal dynamics by modifying network’s free parameters. We begin by introducing a detailed study of the dynamics of large networks of spiking neurons. In spontaneous mode (i. E. Without any input), these networks have a non trivial functioning. According to the parameters of the weight distribution and provided independence hypotheses, we are able to describe completely the spiking activity. Among other results, a bifurcation is predicted according to a coupling factor (the variance of the distribution). We also show the influence of this parameter on the chaotic dynamics of the network. To learn behaviours, we use a biologically plausible learning paradigm – the Spike-Timing Dependent Plasticity (STDP) that allows us to couple neural and external dynamics. Applying shrewdly this learning law enables the network to remain “at the edge of chaos” which corresponds to an interesting state of activity for learning. In order to validate our approach, we use these networks to control an agent whose task is to avoid obstacles using only the visual flow coming from its linear camera. We detail the results of the learning process for both simulated and real robotics platform
Godin, Christelle. „Contributions à l'embarquabilité et à la robustesse des réseaux de neurones en environnement radiatif : apprentissage constructif : neurones à impulsions“. École nationale supérieure de l'aéronautique et de l'espace (Toulouse ; 1972-2007), 2000. http://www.theses.fr/2000ESAE0013.
Der volle Inhalt der QuelleJouni, Zalfa. „Analog spike-based neuromorphic computing for low-power smart IoT applications“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST114.
Der volle Inhalt der QuelleAs the Internet of Things (IoT) expands with more connected devices and complex communications, the demand for precise, energy-efficient localization technologies has intensified. Traditional machine learning and artificial intelligence (AI) techniques provide high accuracy in radio-frequency (RF) localization but often at the cost of greater complexity and power usage. To address these challenges, this thesis explores the potential of neuromorphic computing, inspired by brain functionality, to enable energy-efficient AI-based RF localization. It introduces an end-to-end analog spike-based neuromorphic system (RF NeuroAS), with a simplified version fully implemented in BiCMOS 55 nm technology. RF NeuroAS is designed to identify source positions within a 360-degree range on a two-dimensional plane, maintaining high resolution (10 or 1 degree) even in noisy conditions. The core of this system, an analog-based spiking neural network (A-SNN), was trained and tested on a simulated dataset (SimLocRF) from MATLAB and an experimental dataset (MeasLocRF) from anechoic chamber measurements, both developed in this thesis.The learning algorithms for A-SNN were developed through two approaches: software-based deep learning (DL) and bio-plausible spike-timing-dependent plasticity (STDP). RF NeuroAS achieves a localization accuracy of 97.1% with SimLocRF and 90.7% with MeasLoc at a 10-degree resolution, maintaining high performance with low power consumption in the nanowatt range. The simplified RF NeuroAS consumes just over 1.1 nW and operates within a 30 dB dynamic range. A-SNN learning, via DL and STDP, demonstrated performance on XOR and MNIST problems. DL depends on the non-linearity of post-layout transfer functions of A-SNN's neurons and synapses, while STDP depends on the random noise in analog neuron circuits. These findings highlight advancements in energy-efficient IoT through neuromorphic computing, promising low-power smart edge IoT breakthroughs inspired by brain mechanisms
Lorrain, Vincent. „Etude et conception de circuits innovants exploitant les caractéristiques des nouvelles technologies mémoires résistives“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS182/document.
Der volle Inhalt der QuelleIn this thesis, we study the dedicated computational approaches of deep neural networks and more particularly the convolutional neural networks (CNN).We highlight the convolutional neural networks efficiency make them interesting choice for many applications. We study the different implementation possibilities of this type of networks in order to deduce their computational complexity. We show that the computational complexity of this type of structure can quickly become incompatible with embedded resources. To address this issue, we explored differents models of neurons and architectures that could minimize the resources required for the application. In a first step, our approach consisted in exploring the possible gains by changing the model of neurons. We show that the so-called spiking models theoretically reduce the computational complexity while offering interesting dynamic properties but require a complete rethinking of the hardware architecture. We then proposed our spiking approach to the computation of convolutional neural networks with an associated architecture. We have set up a software and hardware simulation chain in order to explore the different paradigms of computation and hardware implementation and evaluate their suitability with embedded environments. This chain allows us to validate the computational aspects but also to evaluate the relevance of our architectural choices. Our theoretical approach has been validated by our chain and our architecture has been simulated in 28 nm FDSOI. Thus we have shown that this approach is relatively efficient with interesting properties of scaling, dynamic precision and computational performance. In the end, the implementation of convolutional neural networks using spiking models seems to be promising for improving the networks efficiency. Moreover, it allows improvements by the addition of a non-supervised learning type STDP, the improvement of the spike coding or the efficient integration of RRAM memory
Rachdi, Adel. „Développement d'un réseau de neurones biologique“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ65389.pdf.
Der volle Inhalt der QuelleFaouzi, Johann. „Machine learning to predict impulse control disorders in Parkinson's disease“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS048.
Der volle Inhalt der QuelleImpulse control disorders are a class of psychiatric disorders characterized by impulsivity. These disorders are common during the course of Parkinson's disease, decrease the quality of life of subjects, and increase caregiver burden. Being able to predict which individuals are at higher risk of developing these disorders and when is of high importance. The objective of this thesis is to study impulse control disorders in Parkinson's disease from the statistical and machine learning points of view, and can be divided into two parts. The first part consists in investigating the predictive performance of the altogether factors associated with these disorders in the literature. The second part consists in studying the association and the usefulness of other factors, in particular genetic data, to improve the predictive performance
Jouffroy, Guillaume. „Contrôle oscillatoire par réseau de neurones récurrents“. Paris 8, 2008. http://www.theses.fr/2008PA082918.
Der volle Inhalt der QuelleIn the control field, most of the applications need a non-oscillatory continuous control. This work focuses instead on controllers with recurrent neural networks (RNN) which generate a periodic oscillatory control. The purpose of the present work is to study stochastic optimisation methods which can be used to discover the parameters of a network so that it generates a cyclic input. First we take a look at the knowledge about biological oscillators. Tthen we describe the mathematical tools to be able to guarantee the stability oscillators. The potential of RNN, especially applied to dynamical systems being still poorly used, we propose for each method, a general detailed matrix formalization and we precise the computational complexity of the methods. We validate each method using a simple example of oscillator, and we demonstrate analytically the stability of the resulting oscillator, but also how it is robust to parameters perturbations. We then compare these different methods with these criteria and the speed of convergence. We finish this thesis with an illustration, where we take all the steps of the construction of an oscillatory neural controller, to control the axis of direction of a particular vehicle. This will let us discuss how realistic is the use of recurrent neural networks in the field of control, and propose interesting questions
Yonaba, Harouna. „Modélisation hydrologique hybride : réseau de neurones - modèle conceptuel“. Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26583/26583.pdf.
Der volle Inhalt der QuelleCarpentier, Mathieu. „Classification fine par réseau de neurones à convolution“. Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.
Der volle Inhalt der QuelleArtificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
Fayad, Farah. „Apprentissage et annulation des bruits impulsifs sur un canal CPL indoor en vue d'améliorer la QoS des flux audiovisuels“. Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00769953.
Der volle Inhalt der QuelleBücher zum Thema "Réseau de neurones à impulsions"
Delgado, Guillermo Díaz. Automatisation d'une colonne de flottation de laboratoire et estimation de l'interface à l'aide d'un réseau de neurones. [s.l: s.n.]., 1996.
Den vollen Inhalt der Quelle findenRennes, Université de, Hrsg. Typologie prédictive de consommateurs sur la base de leurs chainages moyens-fins: Une approche par réseau de neurones et algorithme génétique. Grenoble: A.N.R.T. Université Pierre Mendès France Grenoble 2, 1997.
Den vollen Inhalt der Quelle findenLynn, Nadel, Hrsg. Neural connections, mental computation. Cambridge, Mass: MIT Press, 1990.
Den vollen Inhalt der Quelle findenDayhoff, Judith E. Neural network architectures: An introduction. New York, N.Y: Van Nostrand Reinhold, 1990.
Den vollen Inhalt der Quelle findenNeural Network Architectures: An Introduction. Van Nostrand Reinhold, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Réseau de neurones à impulsions"
DE’ FAVERI TRON, Alvise. „La détection d’intrusion au moyen des réseaux de neurones : un tutoriel“. In Optimisation et apprentissage, 211–47. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch8.
Der volle Inhalt der QuelleMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU und Zhe ZHU. „Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales“. In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Der volle Inhalt der QuelleJACQUEMONT, Mikaël, Thomas VUILLAUME, Alexandre BENOIT, Gilles MAURIN und Patrick LAMBERT. „Analyse d’images Cherenkov monotélescope par apprentissage profond“. In Inversion et assimilation de données de télédétection, 303–35. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9142.ch9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Réseau de neurones à impulsions"
ORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez und Oihan Allegret. „Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples“. In Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Der volle Inhalt der Quelle