Dissertationen zum Thema „Réplication d'ADN“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-21 Dissertationen für die Forschung zum Thema "Réplication d'ADN" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Becherel, Olivier J. „Trafic d'ADN polymérases lors de la réplication de l'ADN endommagé chez Escherichia coli“. Université Louis Pasteur (Strasbourg) (1971-2008), 2001. http://www.theses.fr/2001STR13143.
Der volle Inhalt der QuelleBialic, Marta. „Dynamique de la réplication dans les cellules souches pluripotentes“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT020.
Der volle Inhalt der QuelleEmbryonic stem (ES) and induced pluripotent stem (iPS) cells have a great potential for regenerative medicine due to their capacity to self-renew indefinitely and to generate multiple cell types, but the key question of how they establish and maintain a pluripotent epigenome is not resolved. Interestingly all ES and iPS cells display a peculiar cell cycle with rapid doubling time, very short G1, and S phase representing 60-70% of the total cell cycle. In this work we tried to see whether chromosomes in mouse and human ES cells are replicated in a special way that might be used to set up the pluripotency state or to define cell identity. Mammalian genomes are duplicated by the firing of ~20,000 replication origins, organized in ~3000 small clusters forming replication foci that are spatially and temporally regulated during S phase. It has been shown that many of these topologically-associated domains change their replication time upon cell differentiation or reprogramming, but the exact mechanisms involved remain poorly understood. Here we used DNA combing to compare fork velocity (FV), local inter-origin distances (IOD) and global instant fork density (GIFD) between pluripotent mouse ES cells and fibroblasts (MEF), as well as during the differentiation of mES cells into embryoid bodies (EB) and neural precursors. We found that FV is slightly reduced (1.8 vs 2.0 kb/min) and IOD basically unchanged in mES compared to MEF. In contrast GIFD, which represents the density of forks active at any moment during S phase, shows a strong reduction from 2 forks/Mb in MEF to 1 fork/Mb in mES cells. We found a similar drop in GIFD in human ES cells (H9) compared to fibroblasts (BJ). To test whether this lower fork density is compensated by an extension of S phase, we developed a dual pulse/chase protocol to measure S-phase length in asynchronous populations by FACS. Using this assay, we found that S-phase length is identical (~8.4 hr) in both mES and MEF cells, despite the GIFD drop in the former. This raises an interesting question: how can ES cells replicate the same amount of DNA, in the same time and with similar fork velocity, but using a 2-fold lower instant fork density? We propose that the lower GIFD (amplitude) is compensated by a higher frequency of replication foci activation, which is not detected by the GIFD pulse protocol. This higher frequency of replication foci activation could play a role in the establishment and/or maintenance of a chromatin structure permissive for pluripotency or self-renewal
Brodie, Of Brodie Edward-Benedict. „De l'analyse des séquences d'ADN à la modélisation de la réplication chez les mammifères“. Lyon, École normale supérieure (sciences), 2005. http://www.theses.fr/2005ENSL0325.
Der volle Inhalt der QuelleNecsulea, Anamaria. „Etude des patrons d'évolution asymétrique dans les séquences d'ADN“. Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00305419.
Der volle Inhalt der QuelleNous avons étudié la co-orientation entre réplication et transcription chez les procaryotes. Nous proposons une méthode pour l'étude des biais de composition qui découple ces deux sources d'asymétrie. Nous montrons que les biais associés à la réplication sont très variables, même entre espèces proches.
Nous avons ensuite analysé le patron de substitution dans les régions transcrites et autour des origines de réplication du génome humain, et notamment l'effet du contexte 5'-3'. Les biais de voisinage sont similaires pour l'asymétrie associée à la réplication et à la transcription. La variation des taux de substitutions en fonction du patron d'expression des gènes suggère qu'un biais de réparation asymétrique et contexte-dépendant pourrait être en jeu.
Enfin, nous avons proposé une méthode de calcul du patron de substitution dans des séquences à composition biaisée: les microsatellites. Nous avons démontré que les microsatellites transcrits sont sujets au mêmes processus asymétriques que les régions non-répétées.
Charvin, Gilles. „Etudes des topoisomérases de type II par micromanipulation d'ADN“. Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00007023.
Der volle Inhalt der QuelleBrun, Christine. „Organisation en boucles de la molécule d'ADN et réplication : tude de la région 14B-15B du chromosome X et de l'unité des gènes ribosomiques de Drosophila melanogaster“. Aix-Marseille 2, 1992. http://www.theses.fr/1992AIX22017.
Der volle Inhalt der QuelleMignotte, Françoise. „Nature, dynamique et contrôle du stock d'ADN mitochondrial de cellules différenciées“. Paris 11, 1989. http://www.theses.fr/1989PA112237.
Der volle Inhalt der QuelleBrussel, Audrey. „Rôle des différentes formes d'ADN viral dans la réplication et la persistance du Virus de l'Immunodéficience Humaine de type 1“. Paris 6, 2003. http://www.theses.fr/2003PA066035.
Der volle Inhalt der QuelleVelilla, Fabien. „Identification à l'échelle du génome des séquences d'ADN liés à la matrice nucléaire et leurs relations avec la réplication de l’ADN“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20184.
Der volle Inhalt der QuelleChromosomes are organised into several hierarchical levels of chromatin compaction. This spatial organization of chromatin in the nucleus has been involved in regulating many cellular processes such as DNA replication and transcription. Indeed, different experiments suggest that chromatin is organized in loops, whose bases are kept attached together, forming a structure, often called the nuclear matrix, acting as a structural support of the chromatin. My project was to identify the DNA sequences that belong to the bases of these chromatin loops. Matrix-attached regions (MARs) were mapped by hybridization on microarrays. This study was performed on asynchronous as well as G0/G1-phase synchronized MEFs to establish the dynamics of MARs during the cell cycle. MARs were found in megabase-sized domains, with sequences significantly related to previously-published Lamin B1 associated domains and replication timing domains. Since our analysis of MARs was performed on G0-synchronized MEFs, our data strongly suggest that the timing domains might already be defined in G0/G1. Analysis of several histone marks suggested that MARs were associated with transcriptionally-repressed chromatin. In parallel, we also performed a proteomic analysis of our matrix preparations, and found known "matrix-attached" proteins, thus validating our experimental approach, plus other components that permitted a better characterization of the nuclear matrix. Taken together, our results show that DNA sequences bound to the nuclear matrix constitute a repressive zone, at the transcription and replication levels
Wang, Weitao. „Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS048.
Der volle Inhalt der QuelleDNA replication is regulated by the location and timing of replication initiation. Therefore, much effort has been invested in identifying and analyzing the sites of human replication initiation. However, the heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation site utilization in metazoans has made mapping the location and timing of replication initiation in human cells difficult. A potential solution to the problem of human replication mapping is single-molecule analysis. However, current approaches do not provide the throughput required for genome-wide experiments. To address this challenge, we have developed Optical Replication Mapping (ORM), a high-throughput single-molecule approach to map newly replicated DNA and used it to map early initiation events in human cells. The single-molecule nature of our data, and a total of more than 2000-fold coverage of the human genome on 27 million fibers averaging ~300 kb in length, allow us to identify initiation sites and their firing probability with high confidence. In particular, for the first time, we are able to measure genome-wide the absolute efficiency of human replication initiation. We find that the distribution of human replication initiation is consistent with inefficient, stochastic initiation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. In particular, we find sites of human replication initiation are not confined to well-defined replication origins but are instead distributed across broad initiation zones consisting of many initiation sites. Furthermore, we find no correlation of initiation events between neighboring initiation zones. Although most early initiation events occur in early-replicating regions of the genome, a significant number occur in late replicating regions. The fact that initiation sites in typically late-replicating regions. The fact that initiation sites in typically late-replicating regions have some probability of firing in early S phase suggests that the major difference between initiation events in early and late replicating regions is their intrinsic probability of firing, as opposed to a qualitative difference in their firing-time distributions. Moreover, modeling of replication kinetics demonstrates that measuring the efficiency of initiation-zone firing in early S phase suffices to predict the average firing time of such initiation zones throughout S phase, further suggesting that the differences between the firing times of early and late initiation zones are quantitative, rather than qualitative. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans
Saulebekova, Dalila. „Study of DNA replication program of the human genome by high–throughput single-molecule Optical Replication Mapping“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS185.pdf.
Der volle Inhalt der QuelleDNA replication is a crucial cellular process, ensuring that each cell division results in an accurate duplication of genome composed of > 6 billion base pairs in humans. This process relies on the precise activation of thousands of replication origins in a defined temporal order called Replication Timing (RT) program. This program is tightly linked to chromatin organization and its deregulation can lead to genome instability, mutations and development of diseases, such as cancer. However, heterogeneous and stochastic nature of origins activation in mammalian cells poses significant challenges to our understanding of DNA replication initiation in humans. Chromatin organization and RT are intricately linked to genome function, with theevolutionary conserved protein RIF1 playing a key role in controlling these processes. Although the importance of RIF1 in regulating the timing of DNA replication and the chromatin organization is well studied, whether RIF1 affects the location and efficiency of replication initiation sites remained unclear. In this work, to investigate the detailed impact of RIF1 on replication origins initiation and dynamics, we applied Optical Replication Mapping, (ORM) - a high-throughput, single-molecule approach recently developed by our team, that combines the fluorescent detection of in vivo labelled active origins over long individual DNA molecules and their optical mapping to the genome using Bionano Genomics technology. Our results obtained from early S-phase HCT116 cells addresses the research gap by demonstrating that RIF1 depletion let to a dramatic change in origin location and firing efficiency, showing a more homogeneous firing across the genome, and challenging previous assumptions about replication origin specificity and efficiency. Notably, our enhanced ORM approach enabled the discovery of large number of new origins activated upon the depletion of RIF1, alongside a detailed characterization of the associated histone modification patterns. Our results also uncover the differences in origins initiation in relation to the newly classified chromatin states: we observed that the absence of RIF1 did not uniformly impact all chromatin states. Specifically, RIF1 depletion significantly enhances the replication initiation in the newly characterized B0 state, characterized by enriched H3K9me2 and H2A.Z and neutral interaction preferences for A and B compartments, and minimally affects the late-replicating B4 heterochromatin. To advance the study of late replication regions, we have upgraded the ORM method by improving the labelling efficiency that allowed us to compute a high-resolution Replication Fork Directionality profile (RFD) directly from the asynchronized cells. RFD profiles revealed the initiation dynamics in late regions including Common Fragile Sites (CFSs) and confirmed that the activation of previously absent late replication origins. Through combination of multi-omics and ORM approaches, this work for the first time demonstrates that RIF1 not only alters RT but it's absence also leads to the activation of new origins, providing an important support for further dissecting the molecular mechanisms governing DNA replication and genome organization
Gerard, Annabelle. „Le facteur d’assemblage de la chromatine CAF-1 : son importance pour la réplication et l’organisation de l’hétérochromatine péricentrique“. Paris 6, 2007. http://www.theses.fr/2007PA066333.
Der volle Inhalt der QuelleTsanov, Nikolay. „La voie de dégradation CRL4Cdt2 régule le recrutement des ADN polymérases translésionnelles eta et kappa en foyers nucléaires après endommagements aux UV-C en ciblant pour dégradation les protéines qui contiennent des PIP box spécialisées“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20213/document.
Der volle Inhalt der QuelleThe sliding clamp PCNA is a versatile scaffold for more than fifty proteins involved in DNA metabolism such as replication and repair. How the switch between PCNA partners is regulated is currently not fully understood. Among its partners, Cdt1, p21 and PR-Set7/Set8 contain a specialized PCNA-binding motif named « PIP degron » that promotes their proteolysis in a fashion dependent on the E3 ubiquitin ligase CRL4Cdt2. Upon UV-irradiation, the replication initiation factor Cdt1 is rapidly destroyed in a PIP degron-dependent manner but the role of this degradation is unknown. Here we have analyzed the function of Cdt1 PIP degron and we provide evidence that interference with CRL4Cdt2-mediated destruction of Cdt1 in mammalian cells compromises PCNA-dependent relocalisation of the DNA translesion polymerase eta into UV-induced nuclear foci. By extending this analysis to other PCNA partners, we found that only PIP degrons, as compared to canonical PCNA-binding motifs of Fen1 and p15(PAF), interfere with pol eta focus formation. Mutagenesis of Cdt1 PIP degron revealed that a threonine residue conserved in PIP degrons is critical for inhibition of pol eta focus formation. Our results suggest that removal of high-affinity PIP degron-containing proteins from PCNA by CRL4Cdt2 pathway regulates pol eta recruitment to sites of UV-damage
Zambrano, Ramirez Adrian. „Synthesis of reaction-diffusion patterns with DNA : towards Turing patterns“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS214/document.
Der volle Inhalt der QuelleThis PhD work is devoted to developing an experimental framework to investigate chemical spatiotemporal organization through mechanisms that could be at play during pattern formation in development. We introduce new tools to increase the versatility of DNA-based networks as pattern-forming systems. The emergence of organization in living systems is a longstanding fundamental question in biology. The two most influential ideas in developmental biology used to explain chemical pattern formation are Wolpert's positional information and Turing's reaction-diffusion self-organization. In the case of positional information, the pattern emerges from a pre-existing morphogen gradient across space that provides positional values as in a coordinate system. Whereas, the Turing mechanism relies on self-organization by driving a system of an initially homogeneous distribution of chemicals into an inhomogeneous pattern of concentration by a process that involves solely reaction and diffusion. Although numerical simulations and mathematical analysis corroborate the incredible potential of reaction-diffusion mechanisms to generate patterns, their experimental implementation is not trivial. And despite of the exceptional achievements in pattern formation with Belousov–Zhabotinsky systems, these are difficult to engineer, thus limiting their experimental implementation to few available mechanisms. In order to engineer reaction-diffusion systems that display spatiotemporal dynamics the following three key elements must be controlled: (i) the topology of the network (how reactions are linked to each other, i.e. in a positive or negative feedback manner), (ii) the reaction rates and (iii) the diffusion coefficients. Recently, using nucleic acids as a substrate to make programmable dynamic chemical systems together with the lessons from synthetic biology and DNA nanotechnology has appeared as an attractive approach due to the simplicity to control reaction rates and network topology by the sequence. Our experimental framework is based on the PEN-DNA toolbox, which involves DNA hybridization and enzymatic reactions that can be maintained out of equilibrium in a closed system for long periods of time. The programmability and biocompatibility of the PEN-DNA toolbox open new perspectives for the engineering of the reaction-diffusion chemical synthesis, in particular in two directions. Firstly, to study biologically-inspired pattern-forming mechanisms in simplified, yet relevant, experimental conditions. Secondly to build new materials that would self-build by a process inspired from embryo morphogenesis. We worked towards the goal of meeting the two requirements of Turing patterning, transferring chemical spatiotemporal behavior into material patterns, and imposing boundary conditions to spatiotemporal patterns. Therefore, the structure of this document is divided into four specific objectives resulting in four chapters. In chapter 1 we worked on testing a DNA-based reaction network with an inhibitor-activator topology. In chapter 2 we focused on developing a strategy to tune the diffusion coefficient of activator DNA strands. In chapter 3 we explored how chemical patterns determine the shape of a material. Finally, in chapter 4 we addressed the issue of controlling the geometry over a DNA-based reaction-diffusion system. Overall, we have expanded the number of available tools to study chemical and material pattern formation and advance towards Turing patterns with DNA
Vigne, Solenne. „Inhibition de la réplication des orthopoxvirus par le phénomène d'ARN interférence : perspectives thérapeutiques“. Aix-Marseille 2, 2009. http://www.theses.fr/2009AIX20659.
Der volle Inhalt der QuelleThe potential release of the etiological agent of smallpox, Variola virus, by bioterrorists, has prompted renewed interest in the development of new therapeutic molecules that inhibit poxvirus replication. Here we report the use of the RNA interference technology as a sequence-specific inhibitory approach against orthopoxvirus replication in vitro and in vivo. We have assessed the antiviral activities of several siRNAs targeting different genes that are essential for viral replication of vaccinia virus (VACV). Three siRNAs have been selected : siD5R-2, siB1R-2 and siG7L-1 designed to target, respectively, the D5R gene encoding the DNA-independant nucleoside triphosphatase, the essential viral gene B1R (i. E. , protein kinase) and the G7L gene encoding the protein G7 involved in virus morphogenesis. Each siRNA led to a significant decrease of VACV, cowpox virus (CPXV) and monkeypox virus (MPXV) replication (i. E. , up to 90%) in different cell lines. Our results have also demonstrated the specificity of the antiviral effect of each siRNA: they only knocked down the transcripts of the targeted genes, as shown by real time RT-PCR, and they did not induce any interferon response. Moreover, the antiviral potencies of these three siRNAs, following several routes of administration (i. E. , intranasal, intratracheal, intravenous or topical), have been investigated in vivo in a mouse model of orthopoxvirus infection. To date, cidofovir (Vistide®) is permitted for use as an emergency treatment in the case of smallpox outbreak. Thus, for the first time, we demonstrated the synergistic effect of cidofovir combined with each siRNA against VACV growth in cell culture. Moreover, we evaluated the antiviral potencies of these siRNAs against five vaccinia virus strains bearing mutations in the viral DNA polymerase gene (E9L), which are know to confer resistance to cidofovir and to one of its derivative, HPMPDAP. We finally developed a siRNA as an experimental tool to investigate the mechanism of action of the novel anti-orthopoxvirus compound ST-246. A siRNA (siF13L) designed to silence the F13L gene encoding the viral F13 protein, target of ST-246, confirmed our previous hypothesis: orthopoxviruses exhibit different levels of sensitivity to ST-246 due to their way of propagation. Our findings demonstrate the anti-orthopoxvirus potency of siRNAs and suggest to pursue their development in vivo as therapeutics for the treatment of poxvirus infections
Bouvet, Mickaël. „Etude d'enzymes de modification d'ARN impliquées dans la réplication des flavivirus et des coronavirus“. Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX20714.
Der volle Inhalt der QuelleThis work focused on enzymatic activities of two RNA virus genera, Flavivirus and Coronavirus.We first studied the mRNA cap synthesis machinery of these viruses. Indeed, as they replicate in the cytoplasm of the infected cell, these viruses encode their own mRNA cap-forming enzymes. The canonical mechanism of cap synthesis uses four enzymatic activities, a RNA 5’-triphosphatase, a guanylyltransferase and two methyltransferases.We tried to identify the guanylyltransferase activity involved in this process for flaviviruses and we developed enzymatic assays to characterize both guanylyltransferase and methyltransferase activities. We used the methyltransferase assay in order to test the inhibitor effect of molecules, selected by virtual screening, on the methyltransferase activities of the NS5 protein involved in the capping process.Concerning coronaviruses, we first focused on the methyltransferase activities of the nsp14 and nsp16 proteins. We have reconstituted the complete SARS-CoV mRNA cap methylation in vitro. We showed that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-methyltransferase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Then, we took interest in the exoribonuclease activity of the nsp14 protein and found that this activity is also regulated by the same cofactor, the nsp10 protein. The interaction between the proteins is required to observe the stimulatory effect and it seems that the surface areas of nsp10 interacting with nsp14 and nsp16 overlap. The in vitro characterization of the nuclease activity of nsp14 is according with its potential implication in RNA proofreading mechanism
Tonin, Yann. „Développement d'une stratégie thérapeutique anti-réplicative via l'exploitation de la voie d'import des ARN dans les mitochondries humaines“. Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ093/document.
Der volle Inhalt der QuelleMitochondria are involved in many metabolic pathways, and mutations in their genome (mtDNA) can cause a wide range of human disorders. No efficient treatment against these pathologies is currently available. The objective of this work consisted in the development of a therapeutic approach, called anti-replicative, based on the use of the natural pathway of RNA import into mitochondria. Small artificial RNA molecules able to be imported into human mitochondria have been used as vectors to address oligoribonucleotides capable to hybridize specifically to mutant mtDNA and to stop its replication. The effect of various chemical modifications on the stability, import and efficiency of these recombinant RNA has been characterized. All the data obtained prove the validity of the anti-replicative strategy for mtDNA containing a large deletion or pathogenic point mutations and can be considered as an important step to further develop an efficient therapy of mitochondrial diseases
Ivanyi-Nagy, Roland. „Study of the molecular interaction between hepatitis C virus core protein and the genomic RNA“. Lyon, École normale supérieure (sciences), 2007. http://www.theses.fr/2007ENSL0408.
Der volle Inhalt der QuelleFerlin, Juliette. „Etude de la voie de signalisation GBF1-ARF au cours de la réplication virale“. Thesis, Lille 2, 2018. http://www.theses.fr/2018LIL2S047.
Der volle Inhalt der QuelleGBF1 has recently emerged as a cellular factor essential for the replication of single-stranded positive-sense RNA ((+)RNA) viruses from different families. GBF1 is a guanine-nucleotide exchange factor of small G proteins of the Arf family, known to regulate the early secretory pathway. By studying the hepatitis C virus (HCV) as a model, we have shown that the role of GBF1 in viral replication is distinct from its regulatoryfunction of the sercretory pathway. Indeed, GBF1 function in HCV replication is mediated by Arf4 and Arf5,whereas another pair, Arf1 and Arf4, mediates the regulation of the secretion. To determine if this mechanism ofaction is conserved among (+)RNA viruses, we showed that GBF1 is involved in yellow fever virus (YFV),sindbis virus (SINV), human coronavirus 229E (HCoV-229E) and coxsackievirus B4 (CVB4) infection. Our results indicate that YFV, SINV and HCoV-229E infections are Arf4 and Arf5 dependent, as we previouslyshowed for HCV. However, YFV and SINV would also use another Arf pair, Arf1 and Arf4, during their lifecycle. In addition, CVB4 infection depends on GBF1, but doesn’t seem to depend on any Arf. Although GBF1 is required for (+)RNA viruses replication, its mechanism of action appears not to be conserved.The Arf4-Arf5 pair appears to be involved in the replication of several (+)RNA viruses. However, these twoproteins have been poorly studied so far, contrary to Arf1. Our hypothesis is that the Arf4-Arf5 pair regulatesspecific effectors involved in viral replication. Our results indicate that Arf4 and Arf5 simultaneous depletionalters the morphology of the Golgi apparatus, which becomes condense, and of lipid droplets (LD), whichaccumulate and grow bigger at the cell periphery. However, a lipidomic analysis of Arf4 and Arf5 depleted cellsdisplayed an unaltered lipid composition, which suggests a morphologic impact on LD, rather than a disruptionof the lipid metabolism. A transcriptomic analysis identified proteins up- or down-regulated after Arf4 and Arf5 depletion. We assessed the function of some of these proteins in HCV replication, but none of them proved implicated.In conclusion, our results hightlighed new GBF1 functions, mediated by the pair Arf4-Arf5. Arf4 and Arf5 are involved in regulating the morphology of Golgi complex and of LDs, as well as the replication of (+) RNA viruses. It remains to assess if these functions are independent or related to each other, and which specific effectors they use
Chatel-Chaix, Laurent. „Étude du rôle de la protéine Staufen1 dans le cycle de réplication du virus d'immunodéficience humaine de type 1“. Thèse, 2006. http://hdl.handle.net/1866/15235.
Der volle Inhalt der QuelleDulude, Dominic. „Étude du mécanisme de décalage de phase de lecture en-1 du virus de l'immunodéficience humaine de type 1 et de son importance dans la réplication du virus“. Thèse, 2005. http://hdl.handle.net/1866/15201.
Der volle Inhalt der Quelle