Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Remote sensing - video“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Remote sensing - video" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Remote sensing - video"
Ye, Fanghong, Tinghua Ai, Jiaming Wang, Yuan Yao und Zheng Zhou. „A Method for Classifying Complex Features in Urban Areas Using Video Satellite Remote Sensing Data“. Remote Sensing 14, Nr. 10 (11.05.2022): 2324. http://dx.doi.org/10.3390/rs14102324.
Der volle Inhalt der QuelleMEISNER, D. „Fundamentals of airborne video remote sensing☆“. Remote Sensing of Environment 19, Nr. 1 (Februar 1986): 63–79. http://dx.doi.org/10.1016/0034-4257(86)90041-6.
Der volle Inhalt der QuelleSu, Zhijuan, Gang Wan, Wenhua Zhang, Ningbo Guo, Yitian Wu, Jia Liu, Dianwei Cong, Yutong Jia und Zhanji Wei. „An Integrated Detection and Multi-Object Tracking Pipeline for Satellite Video Analysis of Maritime and Aerial Objects“. Remote Sensing 16, Nr. 4 (19.02.2024): 724. http://dx.doi.org/10.3390/rs16040724.
Der volle Inhalt der QuelleWang, Y., H. Cheng, X. Zhou, W. Luo und H. Zhang. „MOVING SHIP DETECTION AND MOVEMENT PREDICTION IN REMOTE SENSING VIDEOS“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (14.08.2020): 1303–8. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-1303-2020.
Der volle Inhalt der QuelleSun, Siqiu, und Tianbo Xiong. „Application of Remote Sensing Technology in Sustainable Urban Planning and Development“. Applied and Computational Engineering 3, Nr. 1 (25.05.2023): 283–88. http://dx.doi.org/10.54254/2755-2721/3/20230475.
Der volle Inhalt der QuelleBaldock, Tom E., Theo Moura und Hannah E. Power. „Video-Based Remote Sensing of Surf Zone Conditions“. IEEE Potentials 36, Nr. 2 (März 2017): 35–41. http://dx.doi.org/10.1109/mpot.2016.2631018.
Der volle Inhalt der QuelleKANG, Jinzhong, Guizhou WANG, Guojin HE, Huihui WANG, Ranyu YIN, Wei JIANG und Zhaoming ZHANG. „Moving vehicle detection for remote sensing satellite video“. National Remote Sensing Bulletin 24, Nr. 9 (2020): 1099–107. http://dx.doi.org/10.11834/jrs.20208364.
Der volle Inhalt der QuelleLei, Lei, und Dongen Guo. „Multitarget Detection and Tracking Method in Remote Sensing Satellite Video“. Computational Intelligence and Neuroscience 2021 (31.08.2021): 1–7. http://dx.doi.org/10.1155/2021/7381909.
Der volle Inhalt der QuelleEveritt, James H., David E. Escobar, Mario A. Alaniz, Ricardo Villarreal und Michael R. Davis. „Distinguishing Brush and Weeds on Rangelands Using Video Remote Sensing“. Weed Technology 6, Nr. 4 (Dezember 1992): 913–21. http://dx.doi.org/10.1017/s0890037x00036472.
Der volle Inhalt der QuelleWu, Yiguang, Meizhen Wang, Xuejun Liu, Ziran Wang, Tianwu Ma, Zhimin Lu, Dan Liu, Yujia Xie, Xiuquan Li und Xing Wang. „Monitoring the Work Cycles of Earthmoving Excavators in Earthmoving Projects Using UAV Remote Sensing“. Remote Sensing 13, Nr. 19 (26.09.2021): 3853. http://dx.doi.org/10.3390/rs13193853.
Der volle Inhalt der QuelleDissertationen zum Thema "Remote sensing - video"
Buyuksalih, Gurcan. „Geometric and radiometric calibration of video infrared imagers for photogrammetric applications“. Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284703.
Der volle Inhalt der QuelleLee, Christopher Tom. „The use of multispectral video remote sensing to monitor suspended sediment concentrations“. Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185263.
Der volle Inhalt der QuelleMeyer, Jill E. „Use of a Digital Multispectral Video System and Spectroradiometer for Bottomland Hardwood Forest Remote Sensing: A Jurisdictional Boundary Accuracy Assessment and Radiance Examination“. W&M ScholarWorks, 2000. https://scholarworks.wm.edu/etd/1539617758.
Der volle Inhalt der QuelleNolin, Anne Walden 1958. „CLASSIFICATION AND MAPPING OF SOILS USING A MULTISPECTRAL VIDEO SYSTEM AND COMPUTER-AIDED ANALYSIS“. Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276549.
Der volle Inhalt der QuellePotter, Thomas Noel 1959. „The use of multispectral aerial video to determine land cover for hydrological simulations in small urban watersheds“. Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/291381.
Der volle Inhalt der QuellePERUGINI, ELEONORA. „The Application of Video-Monitoring Data to Understand Coastal and Estuarine Processes“. Doctoral thesis, Università Politecnica delle Marche, 2019. http://hdl.handle.net/11566/263695.
Der volle Inhalt der QuelleThe present thesis concerns the application of the data coming from a new video-monitoring station, called SGS, to improve knowledge of the hydro-morphodynamic processes on a typical natural sandy beach near an estuary along the Adriatic coast (Italy). The SGS station was installed in the Senigallia harbour and collects ten minutes of full-frame images at 2Hz each hour. In this work, the videos of the period 2015-2017 have been post-processed. The elaborated images have been used to perform two different analyses: 1) the study of the capability of the SGS data to estimate the water depth using cBathy (a widely used algorithm for depth-inversion) and 2) the study of the dynamics of a multiple sandbars system. The results of the first analysis varied in quality as a function of the location and wave conditions and a general underestimation of the depth has been found in a large portion of the domain. A detailed debugging analysis was carried out to find the reasons of this poor performance. The main source of error was found to be the large angle between the camera viewing direction and the direction of propagation of the incident waves. A synthetic analysis was performed to analyse in depth this aspect. The synthetic procedure can be applied also to design future shore-based video monitoring stations. With reference to the second analysis, the complex 3D-variability (switching and bifurcation) of the multiple sandbars system has been recognized from the images, this highlighting the capability of the SGS station to monitor the seabed features of the study field. Three orders of bars have been identified, in agreement with previous studies based on data collected by in-situ surveys and their motion has been correlated with the wave climate. In the analysed period, a general stability of the bar system in response to storm events with waves coming from NNE has been found, while a net offshore migration has been observed under the only storm with waves coming from ESE. The different behaviour has been related to the wave direction and to the reflection of the ESE waves off the wall of the nearby river pier.
Garges, David Casimir. „Early Forest Fire Detection via Principal Component Analysis of Spectral and Temporal Smoke Signature“. DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1456.
Der volle Inhalt der QuelleYoo, Jeseon. „Nonlinear Bathymetry Inversion Based on Wave Property Estimation from Nearshore Video Imagery“. Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19793.
Der volle Inhalt der QuelleSalva, Karol T. „A Hybrid Approach to Aerial Video Image Registration“. Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1483524722687971.
Der volle Inhalt der QuelleMachabée, Jaimie. „Caractérisation de l'hydro-morphodynamique de la zone intertidale du récif frangeant de l'Hermitage par caméra vidéo (La Réunion)“. Electronic Thesis or Diss., La Réunion, 2024. http://www.theses.fr/2024LARE0015.
Der volle Inhalt der QuelleCoral reefs, iconic environments of global biodiversity, face the challenges of climate change, rising sea levels, and increasing coastal development. Despite their ecological and economic significance, beaches adjacent to these reefs, especially fringing back-reef beaches, have received relatively little attention. This manuscript presents doctoral research aimed at enhancing our understanding of the hydro-morphodynamics of these beaches across various time scales, utilizing a Video Monitoring System (VMS) coupled with a pressure sensor. The study site, Hermitage Beach, situated in a microtidal zone on the western coast of La Réunion in the Indian Ocean, is frequently exposed to southern swells and cyclonic events. Since 2014, this beach has been monitored by Differential Global Positioning System (DGPS) and drone as part of the Dynalit National Observation System (SNO Dynalit). Findings spanning from 1950 to the present highlight a significantly eroded beach, attributed to various anthropogenic factors. The results of this thesis illustrate the relevance and constraints of utilizing such instrumentation (video camera and pressure sensor) for investigating back-reef beaches. Seasonal fluctuations in the waterline position, with a retreat of 1.4 m in winter and an advance of 0.9 m in summer, are observed. On average, the reef attenuates 97% of incoming swells and functions as a low-pass filter. Additionally, an analysis of runup on the foreshore reveals that low-frequency waves contribute 50% to this phenomenon, with water level setup contributing up to 40%. This research underscores the critical role of long waves (infragravity (IG) and Very Low Frequency (VLF)) in both submersion and erosion processes. It sets the stage for further exploration in this environmental context, particularly in light of climate change and rising sea levels
Bücher zum Thema "Remote sensing - video"
Chezar, Henry. An all-weather time-lapse video recording station. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Den vollen Inhalt der Quelle findenE, Thomas Joseph, und Geological Survey (U.S.), Hrsg. An all-weather time-lapse video recording station. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Den vollen Inhalt der Quelle findenChezar, Henry. An all-weather time-lapse video recording station. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Den vollen Inhalt der Quelle findenChezar, Henry. An all-weather time-lapse video recording station. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Den vollen Inhalt der Quelle findenChezar, Henry. An all-weather time-lapse video recording station. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Den vollen Inhalt der Quelle findenGeological Survey (U.S.), Hrsg. HVO/RVTS-1: A prototype remote video telemetry system for monitoring the Kilauea east rift zone eruption, 1997. [Menlo Park, CA]: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Den vollen Inhalt der Quelle findenThornber, Carl R. HVO/RVTS-1: A prototype remote video telemetry system for monitoring the Kilauea east rift zone eruption, 1997. [Menlo Park, CA]: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Den vollen Inhalt der Quelle findenGeological Survey (U.S.), Hrsg. HVO/RVTS-1: A prototype remote video telemetry system for monitoring the Kilauea east rift zone eruption, 1997. [Menlo Park, CA]: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Den vollen Inhalt der Quelle findenGeological Survey (U.S.), Hrsg. HVO/RVTS-1: A prototype remote video telemetry system for monitoring the Kilauea east rift zone eruption, 1997. [Menlo Park, CA]: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Den vollen Inhalt der Quelle findenPerchanok, M. S. Evaluation of a video system for remote monitoring of winter road surface conditions. Downsview, Ont: Research and Development Branch, Ministry of Transportation, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Remote sensing - video"
Silva, Ana Nobre, und Rui Taborda. „Advances in Video Monitoring of the Beach and Nearshore: The Long-Term Perspective“. In Remote Sensing and Modeling, 277–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06326-3_11.
Der volle Inhalt der QuelleRuiz, Pablo, Javier Mateos, Gustavo Camps-Valls, Rafael Molina und Aggelos K. Katsaggelos. „Interactive Pansharpening and Active Classification in Remote Sensing“. In Multimodal Interaction in Image and Video Applications, 67–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35932-3_5.
Der volle Inhalt der QuelleJeune, Hayden, Niklas Pechan, Sharn-Konet Reitsma und Andreas W. Kempa-Liehr. „Spatial Variation Sequences for Remote Sensing Applications with Small Sample Sizes“. In Image and Video Technology, 153–66. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0376-0_12.
Der volle Inhalt der QuelleMeißner, Henry, Michael Cramer und Ralf Reulke. „Evaluation of Structures and Methods for Resolution Determination of Remote Sensing Sensors“. In Image and Video Technology, 59–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39770-8_5.
Der volle Inhalt der QuelleZhao, Jiao, Jing Han, Chen Feng und Jian Yao. „A Systematic Scheme for Automatic Airplane Detection from High-Resolution Remote Sensing Images“. In Image and Video Technology, 465–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92753-4_36.
Der volle Inhalt der QuelleBrauchle, Jörg, Steven Bayer und Ralf Berger. „Automatic Ship Detection on Multispectral and Thermal Infrared Aerial Images Using MACS-Mar Remote Sensing Platform“. In Image and Video Technology, 382–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92753-4_30.
Der volle Inhalt der QuelleYu, Zhicheng, Tao Li und Ke Liu. „Research on Automatic Target Tracking Technology Based on Remote Sensing Video Data“. In Lecture Notes in Electrical Engineering, 688–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4163-6_82.
Der volle Inhalt der QuelleBrunn, Andreas, Sara Bahloul, Dietrich Hoffmann und Cody Anderson. „Recent Progress in In-Flight Radiometric Calibration and Validation of the RapidEye Constellation of 5 Multispectral Remote Sensing Satellites“. In Image and Video Technology – PSIVT 2015 Workshops, 273–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30285-0_22.
Der volle Inhalt der QuelleÁlvarez Casado, Constantino, Pauli Räsänen, Le Ngu Nguyen, Arttu Lämsä, Johannes Peltola und Miguel Bordallo López. „A Distributed Framework for Remote Multimodal Biosignal Acquisition and Analysis“. In Communications in Computer and Information Science, 127–46. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59091-7_9.
Der volle Inhalt der QuelleTan, Haibin, Bin Cai, Yuan Xue, Yiling Liu, Yuxin Jin, Renjia Wei und Hai Yu. „Research on Video Reuse and Structured Spatio-Temporal Big Data Technology Based on 3D Remote Sensing“. In Smart Innovation, Systems and Technologies, 133–45. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5184-6_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Remote sensing - video"
Rambabu, Damalla, Rajeshreddy Datla, Vishnu Chalavadi und C. Krishna Mohan. „A Hybrid Embedding for Generalized Zero-Shot Scene Classification in Remote Sensing Images“. In 2024 IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/avss61716.2024.10672594.
Der volle Inhalt der QuelleYang, Shuqin, Haopu Yuan, Tianqi Wang, Rui Zhong, Chenggang Song, Ying Fu, Wenyi Ge und Xia Yuan. „Procedural Generation of 3D Scenes for Urban Landscape Based on Remote Sensing Images“. In 2024 IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/avss61716.2024.10672567.
Der volle Inhalt der QuelleByun, Jungmin, Seokwon Lee, Myeong-Jin Lee und Woo-Kyung Lee. „Warp-Based Stabilization for Autofocused Video SAR Sequences“. In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 6438–42. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10642472.
Der volle Inhalt der QuelleZuo, Haowen, Hongyang An, Junjie Wu, Kah Chan Teh, Zhongyu Li und Jianyu Yang. „Video SAR Reconstruction Based on Low-Rank Representation“. In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 6534–38. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10640753.
Der volle Inhalt der QuellePost, Robert P., und Hironori M. Sasaki. „Remote video surveillance systems“. In SPIE Defense, Security, and Sensing, herausgegeben von Edward M. Carapezza. SPIE, 2009. http://dx.doi.org/10.1117/12.818763.
Der volle Inhalt der QuelleKim, Yong-Sung, Gyu-Hee Park, Seung-Hwan Kim und Hyung-Joon Cho. „Fast motion detection in coded video streams for a large-scale remote video sensor system“. In SPIE Remote Sensing, herausgegeben von Bormin Huang, Sebastian López und Zhensen Wu. SPIE, 2014. http://dx.doi.org/10.1117/12.2067109.
Der volle Inhalt der QuelleSaur, Günter, und Wolfgang Krüger. „Short-term change detection for UAV video“. In SPIE Remote Sensing, herausgegeben von Lorenzo Bruzzone. SPIE, 2012. http://dx.doi.org/10.1117/12.975156.
Der volle Inhalt der QuelleMaleh, Ray, Frank A. Boyle, Paul B. Deignan und Jerry W. Yancey. „Interactive video compression for remote sensing“. In SPIE Defense, Security, and Sensing, herausgegeben von Daniel J. Henry, Beato T. Cheng, Dale C. Linne von Berg und Darrell L. Young. SPIE, 2011. http://dx.doi.org/10.1117/12.886426.
Der volle Inhalt der QuelleHoward, Richard T., Michael L. Book und Thomas C. Bryan. „Video-based sensor for tracking three-dimensional targets“. In Europto Remote Sensing, herausgegeben von John D. Gonglewski, Gary W. Kamerman, Anton Kohnle, Ulrich Schreiber und Christian Werner. SPIE, 2001. http://dx.doi.org/10.1117/12.413832.
Der volle Inhalt der QuelleSantos, Lucana, Sebastian López, Gustavo M. Callicó, Jose F. López und Roberto Sarmiento. „Lossy hyperspectral image compression with state-of-the-art video encoder“. In SPIE Remote Sensing, herausgegeben von Bormin Huang und Antonio J. Plaza. SPIE, 2011. http://dx.doi.org/10.1117/12.898523.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Remote sensing - video"
Mecimore, Ivan, Chuck D. Creusere und Bion John Merchant. Distributed video coding for arrays of remote sensing nodes : final report. Office of Scientific and Technical Information (OSTI), Juni 2010. http://dx.doi.org/10.2172/992327.
Der volle Inhalt der QuelleAnderson, Gerald L., und Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, Dezember 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Der volle Inhalt der QuelleBates, C. Richards, Melanie Chocholek, Clive Fox, John Howe und Neil Jones. Scottish Inshore Fisheries Integrated Data System (SIFIDS): Work package (3) final report development of a novel, automated mechanism for the collection of scallop stock data. Herausgegeben von Mark James und Hannah Ladd-Jones. Marine Alliance for Science and Technology for Scotland (MASTS), 2019. http://dx.doi.org/10.15664/10023.23449.
Der volle Inhalt der Quelle