Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Reliability qualification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reliability qualification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Reliability qualification"
S., VELMOURUOGAN, DHAVACHELVAN P. und BASKARAN R. „Software Reliability Qualification Model“. International Journal of Performability Engineering 8, Nr. 4 (2012): 437. http://dx.doi.org/10.23940/ijpe.12.4.p437.mag.
Der volle Inhalt der QuelleRegard, Charles, Christian Gautier, Hélène Fremont, Patrick Poirier, M. A. Xiaosong und Kaspar M. B. Jansen. „Fast reliability qualification of SiP products“. Microelectronics Reliability 49, Nr. 9-11 (September 2009): 958–62. http://dx.doi.org/10.1016/j.microrel.2009.07.042.
Der volle Inhalt der QuellePorter, Alex. „Accelerated Reliability Qualification in Automotive Testing“. Quality and Reliability Engineering International 20, Nr. 2 (25.02.2004): 115–20. http://dx.doi.org/10.1002/qre.619.
Der volle Inhalt der QuelleReffiane, Fine, Choirul Huda, Mudzanatun Mudzanatun und Ferina Agustini. „ANALISIS DIFERENSIASI KARYA PADA KEMAMPUAN LITERASI SAINTEK MAHASISWA KEPENDIDIKAN UNIVERSITAS PGRI SEMARANG“. Refleksi Edukatika : Jurnal Ilmiah Kependidikan 14, Nr. 2 (28.06.2024): 208–13. http://dx.doi.org/10.24176/re.v14i2.12498.
Der volle Inhalt der QuelleHarry, C. C., und C. H. Mathiowetz. „ASIC reliability and qualification: a user's perspective“. Proceedings of the IEEE 81, Nr. 5 (Mai 1993): 759–67. http://dx.doi.org/10.1109/5.220906.
Der volle Inhalt der QuelleRoush, M., und J. Maynes. „Saw devices: Space qualification and reliability issues“. International Journal of Satellite Communications 7, Nr. 4 (Oktober 1989): 361–71. http://dx.doi.org/10.1002/sat.4600070413.
Der volle Inhalt der QuelleTIAN, XIJIN. „DC-DC CONVERTER RELIABILITY: DESIGN, COMPONENTS AND QUALIFICATION“. International Journal of Reliability, Quality and Safety Engineering 12, Nr. 05 (Oktober 2005): 459–74. http://dx.doi.org/10.1142/s021853930500194x.
Der volle Inhalt der QuelleKlewer, Christian, Frank Kuechenmeister, Jens Paul, Dirk Breuer, Bjoern Boehme, Jae Kyu Cho, Simone Capecchi und Michael Thiele. „Package Qualification Envelope for 22FDX® Technology“. International Symposium on Microelectronics 2019, Nr. 1 (01.10.2019): 000169–75. http://dx.doi.org/10.4071/2380-4505-2019.1.000169.
Der volle Inhalt der QuelleMikhaylenko, Leonid V., und Dmitry A. Shchelokov. „Digital discrete simulation model of profit formation taking into account the dynamics of cash flows, the level of reliability of launch vehicles and professional development of employees“. Vestnik of Samara University. Economics and Management 14, Nr. 4 (23.01.2024): 221–31. http://dx.doi.org/10.18287/2542-0461-2023-14-4-221-231.
Der volle Inhalt der QuelleDenney, Dennis. „Reliability Qualification Testing for Permanently Installed Wellbore Equipment“. Journal of Petroleum Technology 52, Nr. 10 (01.10.2000): 60–61. http://dx.doi.org/10.2118/1000-0060-jpt.
Der volle Inhalt der QuelleDissertationen zum Thema "Reliability qualification"
Matsumori, Barry Alan. „QUALIFICATION RESEARCH FOR RELIABLE, CUSTOM LSI/VLSI ELECTRONICS“. Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275313.
Der volle Inhalt der QuelleDelage, Sylvain. „Développement d’une méthodologie de qualification de systèmes complexes par des essais de fiabilité“. Thesis, Angers, 2018. http://www.theses.fr/2018ANGE0001/document.
Der volle Inhalt der QuelleThe heating, ventilation and air conditioning (HVAC) field, as any other large industry, must control the reliability of its products in order to guarantee an optimal service to customers, reduce development limits and master its costs. To achieve it, predicted, experimental and operational reliability tools should be known and well applied. Only a strong methodology leading to a qualification strategy can ensure the holding of the reliability target. The first part of this work defines reliability terms and inventories existing methods in related fields and specifically in HVAC. Following that, the qualification methodology is detailed, focusing on feedback, definition of reliability targets and possible test plans. Finally, specific examples implemented at CIAT (UTC) are detailed in final part
Rahko, M. (Matti). „A qualification tool for component package feasibility in infrastructure products“. Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514296819.
Der volle Inhalt der QuelleTiivistelmä Työn tarkoituksena oli esittää uusi kvalifiointityökalu (QT) infrastruktuurituotteiden komponenttikoteloiden käytettävyyden arviointiin. Laitevalmistajien kehittäessä uusia pienempiä, ympäristöystävällisempiä ja kustannustehokkaampia laitteita asettavat he samalla vastaavia vaatimuksia myös komponenttikoteloille. Vastaavasti komponenttien valmistajat joutuvat kehittämään komponentteja ottamalla käyttöön uusia materiaaleja ja kotelorakenteita ja kvalifioimaan niiden ominaisuuksia asiakkaiden vaatimuksien mukaisesti. Laitevalmistajien riski uusien komponenttikoteloiden käyttöönotossa pystytään minimoimaan, kun komponenttikoteloiden kvalifiointi tehdään mahdollisimman aikaisessa vaiheessa. Kvalifioinnit tehdään yleensä kvalifiointiasiantuntijoiden tietotaidon perusteella. Tämä prosessi on kuitenkin perinteisesti hidas, joten nopeammalle arviointimenetelmälle on selkeä tarve. Työssä kehitettyyn kvalifiointityökaluun määritettiin kahdeksan arviointialuetta. Lisäksi sitä voidaan käyttää kolmella eri kvalifiontiperiaatteella. Näiden arviointialueiden huomioiminen kvalifiointiprosessin aikana parantaa selkeästi tuloksen luotettavuutta ja todenmukaisuutta. Työkalu on määritetty siten, että sitä voivat käyttää asiantuntijat avustavana kvalifiointityökaluna sekä suunnittelijat / komponentti-insinöörit alustavana kvalifiointityökaluna. Lisäksi sitä voidaan myös käyttää asiakasvaatimusten määrityksessä ja tiedonvälityksessä asiakkaan ja toimittajan välillä. QT:n kvalifiointialueiden määrittelyn ja toiminnallisuuden rakentamisen jälkeen, hyväksyntäkriteerit tutkittiin ja arvioitiin käyttäen 44 erilaista kaupallista komponenttikoteloa työkalun lopullisen hienosäädön tekemiseksi. Koska kvalifioinnin tiedot tallennetaan QT:n tietokantaan, pystyy laitevalmistajat hyödyntämään aikaisemmat historiatiedot tulevissa kvalifioinneissa. QT on ennen näkemätön työkalu, sillä markkinoilla ei ole vastaavia avoimen lähdekoodin kvalifiointityökaluja tarjolla, jota voidaan räätälöidä asiakkaan omien tarpeiden mukaisesti
Sohoin, Koffisse rodrigue. „Définition d’une méthodologie d’estimation de fiabilité et de qualification de systèmes mécanique en phase de développement“. Thesis, Angers, 2020. http://www.theses.fr/2020ANGE0001.
Der volle Inhalt der QuelleIn order to guarantee performance under customer conditions, reliability estimation is essential in all phases of product development. This task can be long and costly in the absence of an optimized approach, especially in a context where products are various. The work of this thesis is part of an optimization of the procedure of estimation and qualification of reliability during the development phases of mechanical subassemblies developed by FAURECIA company. To obtain a realistic estimate at the design phase, the proposed methodology incorporates the existing data (RETEX) on reference products in the predictive reliability estimation of new designs, the latter being traditionally carried out using numerical structural reliability methods. The integration of RETEX is performed by two proposed approaches. One using a similarity factor between experimental and numerical reliability, and the other using a time transfer function between experimental and numerical reliability. The proposed methodology allows building a better predictive reliability function, for a new design at the earliest stage of the development process, even before the prototype manufacturing phase. This makes it possible to anticipate the performance of the new product in order to make modifications if necessary, or to build prior information that will be important in a Bayesian reliability qualification plan optimization for the new product
Indmeskine, Fatima-Ezahra. „Evaluation et qualification de la fiabilité des composants et des procédés d’assemblages électroniques pour applications médicales“. Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0029.
Der volle Inhalt der QuelleElectronics in AIMDs expose patients to risks in case of component failure. Unlike aeronautics, where redundancy is common, AIMDs face constraints like miniaturisation that hinder its application. Additionally, the "medical grade" of components lacks standardization, complicating qualification. The absence of specific standards and limited studies on AIMD environments makes mission profile development challenging. To address this, a state-of-the-art review defined a mission profile integrating environmental constraints critical for reliability tests, as these strongly influence component failures. A methodology based on the mission profile, FMMEA, experimental designs, and accelerated tests was developed to qualify SMD components, including resistors, ceramic capacitors, inductors, and integrated circuits. This solves two key issues: designing efficient accelerated tests to detect latent quality defects and demonstrating reliability aligned with the mission profile. This work is part of the R&D project "RECOME"
Ferraro, Rudy. „Development of Test Methods for the Qualification of Electronic Components and Systems Adapted to High-Energy Accelerator Radiation Environments“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS118.
Der volle Inhalt der QuelleThe Large Hadron Collider (LHC), the largest and most powerful in the world, started in 2008 and is the last stage of CERN's accelerator complex. The LHC consists in a 27-kilometer ring of superconducting magnets allowing to accelerate two beams up to 7 TeV before colliding them at 14 TeV in one of the five experiments monitoring the result of the collision. The LHC allowed notably the discovery of the Higgs boson and other baryonic particles predicted by the standard model. The radiation environment of the LHC and its injection lines is composed of different particles over a large spectrum of energies, from GeV level down to meV level (e.g. thermal neutron). The electronic equipment operating in such a harsh radiation environment, mostly based on Commercial Off The Shelf (COTS) components, can experience failures induced by radiation effects. The criticality of the equipment can be very high, in the best case, the failure of a control system can lead to a beam dump, which can drastically the availability of the beam for science and in the worst case, the failure of a safety system can lead to the destruction of part of the machine. The new upgrade of the LHC planned for 2025, the High Luminosity LHC (HL-LHC) will achieve an annual luminosity five time higher than the current version of the LHC. Consequently, the levels of the radiation generated by the operation of the machine will also drastically increase. With such high radiation levels, a significant number of COTS-based systems will be exposed to radiation levels they cannot withstand. This will imply to either design more robust tolerant COTS-based systems and/or substitute preventively systems before their end of life. Thus, while in the previous years the Single Event Effects (SEEs) where the dominant cause of failure, in the future, cumulative radiation effect will as well become a major preoccupation. While a huge effort has been done in the past on the qualification process against SEE-induced failures, the qualification process for cumulative radiation effects, remained mostly unchanged. The aim of this work was, therefore, to investigate how the CERN’s Radiation Hardness Assurance (RHA) could be improved to respond to this new challenge and ensure that no system failures will impact the LHC operations. This involved several activities; (i) the study of the particularities of the LHC radiative environment and its impact on the components and systems exposed to it, (ii) the study of the suitability of current qualification methods and the development of approaches adapted to CERN’s needs and (iii) the study of reliable system lifetime estimation methods
Croquet, Rémi. „Etude des dispersions et incertitudes en optimisation et dans l'analyse des valeurs propres“. Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00740583.
Der volle Inhalt der QuelleBücher zum Thema "Reliability qualification"
United States. Department of Defense., Hrsg. Reliability testing for engineering development, qualification, and production. Washington, DC: Department of Defense, 1986.
Den vollen Inhalt der Quelle findenWohlgemuth, John. History of IEC qualification standards. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenC, Gupta D., Brown George A. 1937- und Conference on Gate Dielectric Integrity (1999 : San Jose, Calif.), Hrsg. Gate dielectric integrity: Material, process, and tool qualification. West Conshocken, Pa: ASTM, 2000.
Den vollen Inhalt der Quelle findenUnited States. Department of Defense., Hrsg. Military handbook: Reliability test methods, plans,and environments for engineering development, qualification,and production. Washington,D.C: Department of Defense, 1987.
Den vollen Inhalt der Quelle findenR, Lofaro, Brookhaven National Laboratory und U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology., Hrsg. Assessment of environmental qualification practices and condition monitoring techniques for low-voltage electric cables. Washington, DC: U.S. Nuclear Regulatory Commission, 2001.
Den vollen Inhalt der Quelle findenMyeyeryakova, Vyera, und Viktor Starodubov. CNC Metal-cutting Machines. ru: INFRA-M Academic Publishing LLC., 2015. http://dx.doi.org/10.12737/5721.
Der volle Inhalt der QuelleFunctional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1994.
Den vollen Inhalt der Quelle finden(Editor), Dinesh C. Gupta, und George Albert Brown (Editor), Hrsg. Gate Dielectric Integrity: Material, Process, and Tool Qualification (Astm Special Technical Publication// Stp) (Astm Special Technical Publication// Stp). ASTM International, 2000.
Den vollen Inhalt der Quelle findenTrepulė, Elena, Airina Volungevičienė, Margarita Teresevičienė, Estela Daukšienė, Rasa Greenspon, Giedrė Tamoliūnė, Marius Šadauskas und Gintarė Vaitonytė. Guidelines for open and online learning assessment and recognition with reference to the National and European qualification framework: micro-credentials as a proposal for tuning and transparency. Vytauto Didžiojo universitetas, 2021. http://dx.doi.org/10.7220/9786094674792.
Der volle Inhalt der QuelleBuchteile zum Thema "Reliability qualification"
Barman, Fariborz. „Reliability Qualification“. In Semiconductor Product Engineering, Quality and Operations, 27–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18030-9_2.
Der volle Inhalt der QuelleHartzell, Allyson L., Mark G. da Silva und Herbert R. Shea. „Testing and Standards for Qualification“. In MEMS Reliability, 215–52. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6018-4_6.
Der volle Inhalt der QuelleBirolini, Alessandro. „Qualification Tests for Components and Assemblies“. In Reliability Engineering, 81–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05409-3_3.
Der volle Inhalt der QuelleBirolini, Alessandro. „Qualification Tests for Components and Assemblies“. In Reliability Engineering, 81–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54209-5_3.
Der volle Inhalt der QuelleBirolini, Alessandro. „Qualification Tests for Components and Assemblies“. In Reliability Engineering, 81–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39535-2_3.
Der volle Inhalt der QuelleBirolini, Alessandro. „Qualification Tests for Components and Assemblies“. In Reliability Engineering, 81–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03792-8_3.
Der volle Inhalt der QuelleBirolini*, Alessandro. „Qualification Tests for Components and Assemblies“. In Reliability Engineering, 81–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14952-8_3.
Der volle Inhalt der QuelleSmith, David J. „Design and Qualification Testing“. In Reliability and Maintainability in Perspective, 72–79. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-10140-5_8.
Der volle Inhalt der QuelleBirolini, Alessandro. „Qualification Tests for Components and Assemblies“. In Quality and Reliability of Technical Systems, 81–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-97983-5_3.
Der volle Inhalt der QuelleMizuishi, K., T. Kato, H. Inoue und H. Ishida. „InP-Based 4 × 4 Optical Switch Package Qualification and Reliability“. In Semiconductor Device Reliability, 329–42. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Reliability qualification"
Janny, Stephen. „U.S. Army Helicopter Structural Reliability and Fleet Failure Rate Requirement“. In Vertical Flight Society 80th Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1088.
Der volle Inhalt der QuelleRadojcic, R. „Universal Qualification- A Qualification Strategy for SUPERASIC's“. In International Report on Wafer Level Reliability Workshop. IEEE, 1992. http://dx.doi.org/10.1109/iwlr.1992.658005.
Der volle Inhalt der QuellePreussger, Andreas. „Strategy of Future Reliability Qualification“. In 2006 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2006. http://dx.doi.org/10.1109/irws.2006.305253.
Der volle Inhalt der QuellePompe, Guido, Aleksandar Opacic und Ton Bolhaar. „Reliability qualification of optical connectors“. In Photonics Europe, herausgegeben von Hans G. Limberger und M. John Matthewson. SPIE, 2004. http://dx.doi.org/10.1117/12.555271.
Der volle Inhalt der QuelleOlney, Andrew. „Evolving MEMS qualification requirements“. In 2010 IEEE International Reliability Physics Symposium. IEEE, 2010. http://dx.doi.org/10.1109/irps.2010.5488824.
Der volle Inhalt der QuelleHalfpenny, Andrew, und Balaje T. Thumati. „Accelerating Fatigue Qualification Tests“. In 2022 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2022. http://dx.doi.org/10.1109/rams51457.2022.9893962.
Der volle Inhalt der QuelleKhalilzadeh-Rezaie, Farnood, und Angelo Miele. „Silicon photonics reliability and qualification standards“. In Smart Photonic and Optoelectronic Integrated Circuits 2024, herausgegeben von Sailing He und Laurent Vivien. SPIE, 2024. http://dx.doi.org/10.1117/12.3001055.
Der volle Inhalt der QuelleDuvvury, Charvaka. „Paradigm shift in ESD qualification“. In 2008 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2008. http://dx.doi.org/10.1109/relphy.2008.4558855.
Der volle Inhalt der QuelleAntanius, Ghadeer, Rutvi Trivedi und Robert Kwasnick. „Platform qualification methodology: Face recognition“. In 2015 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2015. http://dx.doi.org/10.1109/irps.2015.7112709.
Der volle Inhalt der QuelleChaparala, Prasad, Erhong Li und Sameer Bhola. „Reliability qualification of photovoltaic smart panel electronics“. In 2010 17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA 2010). IEEE, 2010. http://dx.doi.org/10.1109/ipfa.2010.5531993.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Reliability qualification"
Tamizhmani, Govindasamy. Reliability Evaluation of Concentrator Photovoltaic Modules per IEC Qualification Specifications. Office of Scientific and Technical Information (OSTI), Dezember 2012. http://dx.doi.org/10.2172/1353049.
Der volle Inhalt der QuelleSkow. PR-244-093703-R01 Uncertainties of In-line Inspection Crack Detection Tools Phases 1-2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2014. http://dx.doi.org/10.55274/r0010828.
Der volle Inhalt der Quelle