Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Reliability of mechanical systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reliability of mechanical systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Reliability of mechanical systems"
Manshin, Yu P., und E. Yu Manshina. „Reliability in mechanical systems projects“. Journal of Physics: Conference Series 2131, Nr. 2 (01.12.2021): 022029. http://dx.doi.org/10.1088/1742-6596/2131/2/022029.
Der volle Inhalt der QuelleMoss, T. R., und J. D. Andrews. „Reliability Assessment of Mechanical Systems“. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 210, Nr. 3 (Oktober 1996): 205–16. http://dx.doi.org/10.1243/pime_proc_1996_210_315_02.
Der volle Inhalt der QuelleChegodaev, D. E., und V. N. Samsonov. „Evaluating the reliability of mechanical systems“. Strength of Materials 19, Nr. 12 (Dezember 1987): 1720–23. http://dx.doi.org/10.1007/bf01523136.
Der volle Inhalt der QuelleBen-Haim, Yakov. „Non-Probabilistic Reliability of Mechanical Systems“. IFAC Proceedings Volumes 27, Nr. 5 (Juni 1994): 281–86. http://dx.doi.org/10.1016/s1474-6670(17)48041-4.
Der volle Inhalt der QuelleBernstein, N. „Reliability analysis techniques for mechanical systems“. Quality and Reliability Engineering International 1, Nr. 4 (Oktober 1985): 235–48. http://dx.doi.org/10.1002/qre.4680010405.
Der volle Inhalt der QuelleKwak, Byung Man. „1704 Algorithms in reliability analysis and optimization for structural and mechanical systems“. Proceedings of The Computational Mechanics Conference 2005.18 (2005): 125–26. http://dx.doi.org/10.1299/jsmecmd.2005.18.125.
Der volle Inhalt der QuelleIvanović, Miloš. „Reliability Distribution in Mechanical Systems for Given Reliability and Cost“. Advanced Materials Research 633 (Januar 2013): 301–11. http://dx.doi.org/10.4028/www.scientific.net/amr.633.301.
Der volle Inhalt der QuelleAvontuur, G. C., und K. van der Werff. „Systems reliability analysis of mechanical and hydraulic drive systems“. Reliability Engineering & System Safety 77, Nr. 2 (August 2002): 121–30. http://dx.doi.org/10.1016/s0951-8320(02)00039-x.
Der volle Inhalt der QuelleLv, H., und Y. Zhang. „Gradual reliability analysis of mechanical component systems“. Materials Research Innovations 18, sup1 (März 2014): S1–29—S1–32. http://dx.doi.org/10.1179/1432891713z.000000000349.
Der volle Inhalt der QuelleTelyshev, D. V. „Mechanical Circulatory Support Systems Reliability Prediction and Assessment“. Proceedings of Universities. ELECTRONICS 25, Nr. 1 (Februar 2020): 58–68. http://dx.doi.org/10.24151/1561-5405-2020-25-1-58-68.
Der volle Inhalt der QuelleDissertationen zum Thema "Reliability of mechanical systems"
Stephenson, John Antony. „Design for reliability in mechanical systems“. Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/251589.
Der volle Inhalt der QuelleZhao, Jian-Hua. „The reliability optimization of mechanical systems using metaheuristic approach“. Mémoire, École de technologie supérieure, 2005. http://espace.etsmtl.ca/326/1/ZHAO_Jian%2DHua.pdf.
Der volle Inhalt der QuelleCampean, Ioan Felician. „Product reliability analysis and prediction : applications to mechanical systems“. Thesis, Bucks New University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714448.
Der volle Inhalt der QuellePu, Jun. „Reliability and availability analysis of three-state device systems“. Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/10384.
Der volle Inhalt der QuelleAnude, Okezie. „The analysis of redundant reliability systems with common-cause failures“. Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6847.
Der volle Inhalt der QuelleBurnham, Michael Richard. „Three competing risk problems in the study of mechanical systems reliability“. Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16853.
Der volle Inhalt der QuelleCrk, Vladimir 1958. „Component and system reliability assessment from degradation data“. Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282820.
Der volle Inhalt der QuelleAzarkhail, Mohammadreza. „Agent autonomy approach to physics-based reliability modeling of structures and mechanical systems“. College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7680.
Der volle Inhalt der QuelleThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wei, Frank L. (Frank Lili) 1977. „Effects of mechanical properties on the reliability of Cu/low-k metallization systems“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42026.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaves 211-217).
Cu and low-dielectric-constant (k) metallization schemes are critical for improved performance of integrated circuits. However, low elastic moduli, a characteristic of the low-k materials, lead to significant reliability degradation in Cu-interconnects. A thorough understanding of the effects of mechanical properties on electromigration induced failures is required for accurate reliability assessments. During electromigration inside Cu-interconnects, a change in atomic concentration correlates with a change in stress through the effective bulk modulus of the materials system, B, which decreases as the moduli of low-k materials used as inter-level dielectrics (ILDs) decrease. This property is at the core of discussions on electromigration-induced failures by all mechanisms. B is computed using finite element modeling analyses, using experimentally determined mechanical properties of the individual constituents. Characterization techniques include nanoindentation, cantilever deflection, and pressurized membrane deflection for elastic properties measurements, and chevron-notched double-cantilever pull structures for adhesion measurements. The dominant diffusion path in Cu-interconnects is the interface between Cu and the capping layer, which is currently a Si3N4-based film. We performed experiments on Cu-interconnect segments to investigate the kinetics of electromigration. A steady resistance increase over time prior to open-circuit failure, a result of void growth, correlates with the electromigration drift velocity. Diffusive measurements made in this fashion are more fundamental than lifetime measurements alone, and correlate with the combined effects of the electron wind and the back stress forces during electromigration induced void growth.
(cont.)Using this method, the electromigration activation energy was determined to be 0.80±0.06eV. We conducted experiments using Cu-interconnects with different lengths to study line length effects. Although a reliability improvement is observed as the segment length decreases, there is no deterministic current-density line-length product, jL, for which all segments are immortal. This is because small, slit-like voids forming directly below vias will cause open-failures in Cu-interconnects. Therefore, the probabilistic jLcrit values obtained from via-above type nterconnects approximate the thresholds for void nucleation. The fact that jLcrit,nuc monotonically decreases with B results from an energy balance between the strain energy released and surface energy cost for void nucleation and the critical stress required for void nucleation is proportional to B. We also performed electromigration experiments using Cu/low-k interconnect trees to investigate the effects of active atomic sinks and reservoirs on interconnect reliability. In all cases, failures were due to void growth. Kinetic parameters were extracted to be ... Quantitative analysis demonstrates that the reliability of the failing segments is modulated by the evolution of stress in the whole interconnect tree. During this process, not only the diffusive parameters but also B play critical roles. However, as B decreases, the positive effects of reservoirs on reliability are diminished, while the negative effects of sinks on reliability are amplified.
(cont.) Through comprehensive failure analyses, we also successfully identified the mechanism of electromigration-induced extrusions in Cu/low-k interconnects to be nearmode-I interfacial fracture between the Si3N4-based capping layer and the metallization/ILD layer below. The critical stress required for extrusion is found to depend not only on B but also on the layout and dimensions of the interconnects. As B decreases, sparsely packed, wide interconnects are most prone to extrusion-induced failures. Altogether, this research accounts for the effects of mechanical properties on all mechanisms of failure due to electromigration. The results provide an improved experimental basis for accurate circuit-level, layout-specific reliability assessments.
by Frank LiLi Wei.
Ph.D.
Singh, Naveen Chandra Lall Pradeep. „Thermo-mechanical reliability models for life prediction of area array electronics in extreme environments“. Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/master's/SINGH_NAVEEN_54.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Reliability of mechanical systems"
Woo, Seongwoo. Reliability Design of Mechanical Systems. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-7236-0.
Der volle Inhalt der QuelleWoo, Seongwoo. Reliability Design of Mechanical Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50829-0.
Der volle Inhalt der Quelle1926-, Davidson J. F., und Hunsley Cathy, Hrsg. The Reliability of mechanical systems. 2. Aufl. London: Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1994.
Den vollen Inhalt der Quelle findenF, Davidson J., Hrsg. The Reliability of mechanical systems. London: Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1988.
Den vollen Inhalt der Quelle finden1926-, Davidson J. F., Hunsley Cathy und Institution of Mechanical Engineers, Hrsg. The reliability of mechanical systems. 2. Aufl. London: Mechanical Engineering for the Institution of Mechanical Engineers, 1994.
Den vollen Inhalt der Quelle findenTitenok, Aleksandr, V. Sidoro und A. V. Kirichek. Ensuring the operational reliability of mechanical systems. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1096388.
Der volle Inhalt der QuelleUnited States. National Aeronautics and Space Administration., Hrsg. Mechanical system reliability for long life space systems: Final report. Nashville, Tenn: Dept. of Mechanical Engineering, Vanderbilt University, 1994.
Den vollen Inhalt der Quelle findenDaniels, B. K. Achieving Safety and Reliability with Computer Systems. Dordrecht: Springer Netherlands, 1987.
Den vollen Inhalt der Quelle findenE, Cabrera, Vela Antonio F und International Course on Improving Efficiency and Reliability in Water Distribution Systems (1994 : Valencia, Spain), Hrsg. Improving efficiency and reliability in water distribution systems. Dordrecht: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenMahadevan, Sankaran. Multidisciplinary system reliability analysis. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Reliability of mechanical systems"
El Hami, Abdelkhalak, und Bouchaïb Radi. „Reliability in Mechanical Systems“. In Uncertainty and Optimization in Structural Mechanics, 17–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118711903.ch2.
Der volle Inhalt der QuelleWoo, Seongwoo. „Mechanical System Failures“. In Reliability Design of Mechanical Systems, 139–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_6.
Der volle Inhalt der QuelleWoo, Seongwoo. „Mechanical System Failures“. In Reliability Design of Mechanical Systems, 249–306. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_7.
Der volle Inhalt der QuelleCarter, A. D. S. „System or equipment reliability“. In Mechanical Reliability, 331–45. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-18478-1_11.
Der volle Inhalt der QuelleGrynchenko, Oleksandr, und Oleksiy Alfyorov. „Prediction of System Reliability“. In Mechanical Reliability, 69–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41564-8_4.
Der volle Inhalt der QuelleWoo, Seongwoo. „Fluid Motion and Mechanical Vibration“. In Reliability Design of Mechanical Systems, 205–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_6.
Der volle Inhalt der QuelleZhang, Yu, Zhuo Wang und Yanhui Wang. „Reliability Analysis of Complex Mechanical Systems“. In Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021, 354–61. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9913-9_40.
Der volle Inhalt der QuelleBen-Haim, Yakov. „Robust Reliability of Static Systems“. In Robust Reliability in the Mechanical Sciences, 31–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61154-4_3.
Der volle Inhalt der QuelleWoo, Seongwoo. „Modern Definitions in Reliability Engineering“. In Reliability Design of Mechanical Systems, 35–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_3.
Der volle Inhalt der QuelleWoo, Seongwoo. „Modern Definitions in Reliability Engineering“. In Reliability Design of Mechanical Systems, 53–99. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Reliability of mechanical systems"
Abdelkhalakl, El Hami, und ITMI Mhamed. „Reliability of Mechanical System of Systems“. In 5th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center (AIRCC), 2018. http://dx.doi.org/10.5121/csit.2018.80410.
Der volle Inhalt der QuelleTadigadapa, Srinivas, und Nader Najafi. „Reliability of micro-electro-mechanical systems (MEMS)“. In Micromachining and Microfabrication, herausgegeben von Rajeshuni Ramesham. SPIE, 2001. http://dx.doi.org/10.1117/12.443002.
Der volle Inhalt der QuelleHassan, Maguid H. M. „Reliability Evaluation of Smart Structural Systems“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79125.
Der volle Inhalt der QuelleFarley, D., A. Dasgupta, M. Al-Bassyiouni und J. W. C. de Vries. „System-Level Reliability Qualification of Complex Electronic Systems“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11762.
Der volle Inhalt der QuelleXu, Shuzhen, und Enrique A. Susemihl. „Reliability Analysis of Water Mist Systems“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41046.
Der volle Inhalt der QuelleXU, Wenkai, Jiankang SUN, Bo FAN und Kunming HONG. „Dynamic Reliability Evaluation of Complex Mechanical System“. In The 2015 International Conference on Mechanical Engineering and Control Systems (MECS2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814740616_0011.
Der volle Inhalt der QuelleRekvava, Paata. „Seismic Reliability Analysis of Structural Systems“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10686.
Der volle Inhalt der QuelleLall, Pradeep, Robert Hinshaw, Ranjit Pandher, Mahendra Harsha und Jeff Suhling. „Thermo-mechanical reliability of SAC leadfree alloys“. In 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2010. http://dx.doi.org/10.1109/itherm.2010.5501303.
Der volle Inhalt der QuelleYin, Chang, Wei Dai und Yuanxing Huang. „Reliability Improvement of mechanical components based on TRIZ“. In 2015 First International Conference on Reliability Systems Engineering (ICRSE). IEEE, 2015. http://dx.doi.org/10.1109/icrse.2015.7366463.
Der volle Inhalt der QuelleAugusti, G., M. Ciampoli und F. Petrini. „Reliability of Structural Systems Under Wind Action“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12357.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Reliability of mechanical systems"
Poerner. PR-015-11211-R02 Mechanical Seal Auxiliary Systems Best Practices Summary. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2014. http://dx.doi.org/10.55274/r0010817.
Der volle Inhalt der QuellePoerner. PR-015-11211-R01 Mechanical Seal Auxiliary Systems Guideline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2013. http://dx.doi.org/10.55274/r0010789.
Der volle Inhalt der QuelleN. Ramirez. Reliability Analysis of the Mechanical System in Selected Portions of the Nuclear HVAC System. Office of Scientific and Technical Information (OSTI), März 2005. http://dx.doi.org/10.2172/850443.
Der volle Inhalt der QuelleGroeneveld, Andrew B., Stephanie G. Wood und Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39601.
Der volle Inhalt der QuelleCox, James V., Sam A. Candelaria, Michael Thomas Dugger, Michelle Ann Duesterhaus, Danelle Mary Tanner, Shannon J. Timpe, James Anthony Ohlhausen et al. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS). Office of Scientific and Technical Information (OSTI), Juni 2006. http://dx.doi.org/10.2172/923082.
Der volle Inhalt der QuelleLozev. L52022 Validation of Current Approaches for Girth Weld Defect Sizing Accuracy. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 2002. http://dx.doi.org/10.55274/r0011325.
Der volle Inhalt der QuelleTehrani, Fariborz M., Kenneth L. Fishman und Farmehr M. Dehkordi. Extending the Service-Life of Bridges using Sustainable and Resilient Abutment Systems: An Experimental Approach to Electrochemical Characterization of Lightweight Mechanically Stabilized Earth. Mineta Transportation Institute, Juli 2023. http://dx.doi.org/10.31979/mti.2023.2225.
Der volle Inhalt der QuelleSadlon, Richard J. Mechanical Applications in Reliability Engineering. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada363860.
Der volle Inhalt der QuelleMcHenry, K. D., und B. G. Koepke. Mechanical Reliability of Piezoelectric and Dielectric Ceramics. Fort Belvoir, VA: Defense Technical Information Center, Juni 1988. http://dx.doi.org/10.21236/ada198458.
Der volle Inhalt der QuelleJadaan, Osama M., und Andrew A. Wereszczak. Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs. Office of Scientific and Technical Information (OSTI), Mai 2009. http://dx.doi.org/10.2172/953658.
Der volle Inhalt der Quelle