Zeitschriftenartikel zum Thema „Relativistic quantum theory“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Relativistic quantum theory.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Relativistic quantum theory" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Frolov, P. A., und A. V. Shebeko. „Relativistic Invariance and Mass Renormalization in Quantum Field Theory“. Ukrainian Journal of Physics 59, Nr. 11 (November 2014): 1060–64. http://dx.doi.org/10.15407/ujpe59.11.1060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Guseinov, I. I. „Quantum Self-Frictional Relativistic Nucleoseed Spinor-Type Tensor Field Theory of Nature“. Advances in High Energy Physics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/6049079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
For study of quantum self-frictional (SF) relativistic nucleoseed spinor-type tensor (NSST) field theory of nature (SF-NSST atomic-molecular-nuclear and cosmic-universe systems) we use the complete orthogonal basis sets of22s+1-component column-matrices type SFΨnljmjδ⁎s-relativistic NSST orbitals (Ψδ⁎s-RNSSTO) and SFXnljmjs-relativistic Slater NSST orbitals (Xs-RSNSSTO) through theψnlmlδ⁎-nonrelativistic scalar orbitals (ψδ⁎-NSO) andχnlml-nonrelativistic Slater type orbitals (χ-NSTO), respectively. Hereδ⁎=pl⁎orδ⁎=α⁎andpl⁎=2l+2-α⁎, α⁎are the integer(α⁎=α, -∞<α≤2) or noninteger(α⁎≠α, -∞<α⁎<3) SF quantum numbers, wheres=0,1/2,1,3/2,2,…. We notice that the nonrelativisticψδ⁎-NSO andχ-NSTO orbitals themselves are obtained from the relativisticΨδ⁎s-RNSSTO andXs-RSNSSTO functions fors=0, respectively. The column-matrices-type SFY1jmjls-RNSST harmonics (Y1ls-RNSSTH) andY2jmjls-modified NSSTH (Y2ls-MNSSTH) functions for arbitrary spinsintroduced by the author in the previous papers are also used. The one- and two-center one-range addition theorems forψδ⁎-NSO and nonintegern χ-NSTO orbitals are presented. The quantum SF relativistic nonperturbative theory forVnljmjδ⁎-RNSST potentials (Vδ⁎-RNSSTP) and their derivatives is also suggested. To study the transportations of mass and momentum in nature the quantum SF relativistic NSST gravitational photon (gph) withs=1is introduced.
3

Polyzou, W. N., W. Glöckle und H. Witała. „Spin in Relativistic Quantum Theory“. Few-Body Systems 54, Nr. 11 (29.12.2012): 1667–704. http://dx.doi.org/10.1007/s00601-012-0526-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

't Hooft, Gerard. „Beyond relativistic quantum string theory“. Modern Physics Letters A 29, Nr. 26 (27.08.2014): 1430030. http://dx.doi.org/10.1142/s0217732314300304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The question "What lies beyond the Quantized String or Superstring Theory?" and the question "What lies beyond Quantum Mechanics itself?" might have one common answer: a discretized, classical version of string theory, which lives on a lattice in Minkowski space. The size a of the meshes on this lattice in Minkowski space is determined by the string slope parameter, α′.
5

Green, H. S. „Quantum Theory of Gravitation“. Australian Journal of Physics 51, Nr. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
6

Chanyal, B. C. „A relativistic quantum theory of dyons wave propagation“. Canadian Journal of Physics 95, Nr. 12 (Dezember 2017): 1200–1207. http://dx.doi.org/10.1139/cjp-2017-0080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Beginning with the quaternionic generalization of the quantum wave equation, we construct a simple model of relativistic quantum electrodynamics for massive dyons. A new quaternionic form of unified relativistic wave equation consisting of vector and scalar functions is obtained, and also satisfy the quaternionic momentum eigenvalue equation. Keeping in mind the importance of quantum field theory, we investigate the relativistic quantum structure of electromagnetic wave propagation of dyons. The present quantum theory of electromagnetism leads to generalized Lorentz gauge conditions for the electric and magnetic charge of dyons. We also demonstrate the universal quantum wave equations for two four-potentials as well as two four-currents of dyons. The generalized continuity equations for massive dyons in case of quantum fields are expressed. Furthermore, we concluded that the quantum generalization of electromagnetic field equations of dyons can be related to analogous London field equations (i.e., current to electromagnetic fields in and around a superconductor).
7

LUNDBERG, LARS-ERIK. „QUANTUM THEORY, HYPERBOLIC GEOMETRY AND RELATIVITY“. Reviews in Mathematical Physics 06, Nr. 01 (Februar 1994): 39–49. http://dx.doi.org/10.1142/s0129055x94000043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We construct a Lorentz-invariant quantum theory on velocity hyperboloids, with Schrödinger theory as its Euclidean analogue and with the property that the scattering operator is Poincaré invariant. This allows us to introduce the classical space-time concept for a macroscopic description of some properties of the microscopic scattering operator. This gives a completely novel approach to the relation between microscopic quantum theory and classical macroscopic sapce-time concepts. Hyperbolic integral geometry will be developed and used extensively in the construction of the theory, which might be called hyperbolic quantum theory. We stress that this is a radically new kind of relativistic quantum theory, where the term, relativistic, has a new meaning, dictated by the quantum theory. Special relativity was extracted from Maxwell's classical theory and should be properly adapted to quantum theory.
8

Shin, Ghi Ryang, und Johann Rafelski. „Relativistic classical limit of quantum theory“. Physical Review A 48, Nr. 3 (01.09.1993): 1869–74. http://dx.doi.org/10.1103/physreva.48.1869.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Aharonov, Yakir, David Z. Albert und Lev Vaidman. „Measurement process in relativistic quantum theory“. Physical Review D 34, Nr. 6 (15.09.1986): 1805–13. http://dx.doi.org/10.1103/physrevd.34.1805.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Strocchi, F. „Relativistic Quantum Mechanics and Field Theory“. Foundations of Physics 34, Nr. 3 (März 2004): 501–27. http://dx.doi.org/10.1023/b:foop.0000019625.30165.35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wang, Zheng-Chuan, und Bo-Zang Li. „Geometric phase in relativistic quantum theory“. Physical Review A 60, Nr. 6 (01.12.1999): 4313–17. http://dx.doi.org/10.1103/physreva.60.4313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhuang, P., und U. Heinz. „Relativistic Quantum Transport Theory for Electrodynamics“. Annals of Physics 245, Nr. 2 (Februar 1996): 311–38. http://dx.doi.org/10.1006/aphy.1996.0011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Gitman, D. M., und A. L. Shelepin. „Orientable Objects in Relativistic Quantum Theory“. Russian Physics Journal 59, Nr. 11 (März 2017): 1962–70. http://dx.doi.org/10.1007/s11182-017-1002-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Daguerre, L., G. Torroba, R. Medina und M. Solís. „NON RELATIVISTIC QUANTUM FIELD THEORY: DYNAMICS AND IRREVERSIBILITY“. Anales AFA 32, Nr. 4 (15.01.2022): 93–98. http://dx.doi.org/10.31527/analesafa.2021.32.4.93.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We study aspects of quantum field theory at finite density using techniques and concepts from quantum information theory. We focus on massive Dirac fermions with chemical potential in 1+1 space-time dimensions. Using the entanglement entropy on an interval, we construct an entropic c-function that is finite. This c-function is not monotonous,and incorporates the long-range entanglement from the Fermi surface. Motivated by previous works on lattice models,we next compute the Renyi entropies numerically, and find Friedel-type oscillations. Next, we analyze the mutual in-formation as a measure of correlation functions between different regions. Using a long-distance expansion developed by Cardy, we show how the mutual information detects the Fermi surface correlations already at leading order in the expansion. Finally, we analyze the relative entropy and its Renyi generalizations in order to distinguish states with different charge. We find that states in different superselection sectors give rise to a super-extensive behavior in the relative entropy.
15

Ziefle, Reiner Georg. „Newtonian quantum gravity“. Physics Essays 33, Nr. 1 (04.03.2020): 99–113. http://dx.doi.org/10.4006/0836-1398-33.1.99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Newtonian Quantum Gravity (NQG) unifies quantum physics with Newton's theory of gravity and calculates the so-called “general relativistic” phenomena more precisely and in a much simpler way than General Relativity, whose complicated theoretical construct is no longer needed. Newton's theory of gravity is less accurate than Albert Einstein's theory of general relativity. Famous examples are the precise predictions of General Relativity at binary pulsars. This is the reason why relativistic physicists claim that there can be no doubt that Einstein's theory of relativity correctly describes our physical reality. With the example of the famous “Hulse-Taylor binary” (also known as PSR 1913 + 16 or PSR B1913 + 16), the author proves that the so-called “general relativistic phenomena” observed at this binary solar system can be calculated without having any knowledge on relativistic physics. According to philosophical and epistemological criteria, this should not be possible, if Einstein's theory of relativity indeed described our physical reality. Einstein obviously merely developed an alternative method to calculate these phenomena without quantum physics. The reason was that in those days quantum physics was not yet generally taken into account. It is not the first time that a lack of knowledge of the underlying physical phenomena has to be compensated by complicated mathematics. Einstein's theory of general relativity indirectly already includes additional quantum physical effects of gravitation. This is the reason why it cannot be possible to unite Einstein's theory of general relativity with quantum physics, unless one uses “mathematical tricks” that make the additional quantum physical effects disappear again in the end.
16

Mirón Granese, Nahuel, Alejandra Kandus und Esteban Calzetta. „Field Theory Approaches to Relativistic Hydrodynamics“. Entropy 24, Nr. 12 (07.12.2022): 1790. http://dx.doi.org/10.3390/e24121790.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Just as non-relativistic fluids, oftentimes we find relativistic fluids in situations where random fluctuations cannot be ignored, with thermal and turbulent fluctuations being the most relevant examples. Because of the theory’s inherent nonlinearity, fluctuations induce deep and complex changes in the dynamics of the system. The Martin–Siggia–Rose technique is a powerful tool that allows us to translate the original hydrodynamic problem into a quantum field theory one, thus taking advantage of the progress in the treatment of quantum fields out of equilibrium. To demonstrate this technique, we shall consider the thermal fluctuations of the spin two modes of a relativistic fluid, in a theory where hydrodynamics is derived by taking moments of the Boltzmann equation under the relaxation time approximation.
17

Balachandran, A. P. „Localization in quantum field theory“. International Journal of Geometric Methods in Modern Physics 14, Nr. 08 (11.05.2017): 1740008. http://dx.doi.org/10.1142/s0219887817400084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function [Formula: see text] vanishes outside a spatial region [Formula: see text], it is said to be localized in [Formula: see text]. In particular, if a spatial region [Formula: see text] is disjoint from [Formula: see text], a wave function [Formula: see text] localized in [Formula: see text] is orthogonal to [Formula: see text]. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.
18

ELZE, H. TH, M. GYULASSY, D. VASAK, HANNELORE HEINZ, H. STÖCKER und W. GREINER. „TOWARDS A RELATIVISTIC SELFCONSISTENT QUANTUM TRANSPORT THEORY OF HADRONIC MATTER“. Modern Physics Letters A 02, Nr. 07 (Juli 1987): 451–60. http://dx.doi.org/10.1142/s0217732387000562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We derive the relativistic quantum transport- and constraint equations for a relativistic field theory of baryons coupled to scalar and vector mesons. We extract a selfconsistent momentum dependent Vlasov term and the structure of quantum corrections for the Vlasov-Uehling-Uhlenbeck approach. The inclusion of pions and deltas into this transport theory is discussed.
19

Kreshchuk, Michael, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary und Peter J. Love. „Light-Front Field Theory on Current Quantum Computers“. Entropy 23, Nr. 5 (12.05.2021): 597. http://dx.doi.org/10.3390/e23050597.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization (BLFQ) framework. The BLFQ formulation of quantum field theory allows one to readily import techniques developed for digital quantum simulation of quantum chemistry. This provides a method that can be scaled up to simulation of full, relativistic quantum field theories in the quantum advantage regime. As an illustration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBM Vigo chip. This is the first time that the light-front approach to quantum field theory has been used to enable simulation of a real physical system on a quantum computer.
20

Nikolić, Hrvoje. „Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory“. Journal of Physics: Conference Series 67 (01.05.2007): 012035. http://dx.doi.org/10.1088/1742-6596/67/1/012035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

GONCHAR, M. O., A. E. KALOSHIN und V. P. LOMOV. „FERMION RESONANCE IN QUANTUM FIELD THEORY“. Modern Physics Letters A 22, Nr. 33 (30.10.2007): 2511–19. http://dx.doi.org/10.1142/s0217732307025443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We accurately derive the fermion resonance propagator by means of Dyson summation of the self-energy contribution. It turns out that the relativistic fermion resonance differs essentially from its boson analog.
22

Larin, S. A. „Higher-derivative relativistic quantum gravity“. Modern Physics Letters A 33, Nr. 05 (20.02.2018): 1850028. http://dx.doi.org/10.1142/s0217732318500281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Relativistic quantum gravity with the action including terms quadratic in the curvature tensor is analyzed. We derive new expressions for the corresponding Lagrangian and the graviton propagator within dimensional regularization. We argue that the considered model is a good candidate for the fundamental quantum theory of gravitation.
23

Earman, John, und Giovanni Valente. „Relativistic Causality in Algebraic Quantum Field Theory“. International Studies in the Philosophy of Science 28, Nr. 1 (02.01.2014): 1–48. http://dx.doi.org/10.1080/02698595.2014.915652.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hegerfeldt, Gerhard C. „Violation of Causality in Relativistic Quantum Theory?“ Physical Review Letters 54, Nr. 22 (03.06.1985): 2395–98. http://dx.doi.org/10.1103/physrevlett.54.2395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Olavo, L. S. F. „Foundations of quantum mechanics: non-relativistic theory“. Physica A: Statistical Mechanics and its Applications 262, Nr. 1-2 (Januar 1999): 197–214. http://dx.doi.org/10.1016/s0378-4371(98)00395-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Liboff, Richard L., und Walter T. Grandy. „Kinetic Theory. Classical, Quantum, and Relativistic Descriptions“. American Journal of Physics 59, Nr. 4 (April 1991): 379–81. http://dx.doi.org/10.1119/1.16509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Valente, Giovanni. „Local disentanglement in relativistic quantum field theory“. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44, Nr. 4 (November 2013): 424–32. http://dx.doi.org/10.1016/j.shpsb.2013.09.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Das, A. „Quantized phase space and relativistic quantum theory“. Nuclear Physics B - Proceedings Supplements 6 (März 1989): 249–50. http://dx.doi.org/10.1016/0920-5632(89)90448-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dosch, H. G., und V. F. Müller. „The facets of relativistic quantum field theory“. European Physical Journal H 35, Nr. 4 (25.03.2011): 331–75. http://dx.doi.org/10.1140/epjh/e2011-10030-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Saunders, Simon W. „Locality, Complex Numbers, and Relativistic Quantum Theory“. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992, Nr. 1 (Januar 1992): 365–80. http://dx.doi.org/10.1086/psaprocbienmeetp.1992.1.192768.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Redhead, Michael. „The Vacuum in Relativistic Quantum Field Theory“. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994, Nr. 2 (Januar 1994): 77–87. http://dx.doi.org/10.1086/psaprocbienmeetp.1994.2.192919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

NARNHOFER, HEIDE. „ENTROPY DENSITY FOR RELATIVISTIC QUANTUM FIELD THEORY“. Reviews in Mathematical Physics 06, Nr. 05a (Januar 1994): 1127–45. http://dx.doi.org/10.1142/s0129055x94000390.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We show how the nuclearity condition of Buchholz and Wichmann allows to define in the ground state a local entropy with the desired properties despite the fact that local algebras are type III. Generalization to temperature states is also possible so that thermodynamic functions also exist in the context of relativistic quantum field theory.
33

Ruijgrok, Th W. „General Requirements for a Relativistic Quantum Theory“. Few-Body Systems 25, Nr. 1-3 (30.12.1998): 5–27. http://dx.doi.org/10.1007/s006010050091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Gill, T. L., T. Morris und S. K. Kurtz. „Foundations for Proper-time Relativistic Quantum Theory“. Universal Journal of Physics and Application 9, Nr. 1 (Februar 2015): 24–40. http://dx.doi.org/10.13189/ujpa.2015.030104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Sonego, Sebastiano. „Quasiprobabilities and explicitly covariant relativistic quantum theory“. Physical Review A 44, Nr. 9 (01.11.1991): 5369–82. http://dx.doi.org/10.1103/physreva.44.5369.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Gill, Tepper L., Trey Morris und Stewart K. Kurtz. „Foundations for proper-time relativistic quantum theory“. Journal of Physics: Conference Series 615 (14.05.2015): 012013. http://dx.doi.org/10.1088/1742-6596/615/1/012013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Maiani, L., und M. Testa. „Unstable Systems in Relativistic Quantum Field Theory“. Annals of Physics 263, Nr. 2 (März 1998): 353–67. http://dx.doi.org/10.1006/aphy.1997.5762.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wu, Xiang-Yao, Si-Qi Zhang, Bo-Jun Zhang, Xiao-Jing Liu, Jing Wang, Hong Li, Nou Ba, Li Xiao, Yi-Heng Wu und Jing-Wu Li. „Non-relativistic Quantum Theory at Finite Temperature“. International Journal of Theoretical Physics 52, Nr. 8 (07.03.2013): 2599–606. http://dx.doi.org/10.1007/s10773-013-1547-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Arteaga, Daniel. „Quasiparticle excitations in relativistic quantum field theory“. Annals of Physics 324, Nr. 4 (April 2009): 920–54. http://dx.doi.org/10.1016/j.aop.2008.12.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Jalalzadeh, Shahram, und A. J. S. Capistrano. „Bohmian mechanics of Klein–Gordon equation via quantum metric and mass“. Modern Physics Letters A 34, Nr. 33 (28.10.2019): 1950270. http://dx.doi.org/10.1142/s0217732319502705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The causal stochastic interpretation of relativistic quantum mechanics has the problems of superluminal velocities, motion backward in time and the incorrect non-relativistic limit. In this paper, according to the original ideas of de Broglie, Bohm and Takabayasi, we introduce simultaneously a quantum mass and a quantum metric of a curved spacetime to obtain a correct relativistic theory free of mentioned problems.
41

De Martini, Francesco, und Enrico Santamato. „Proof of the spin-statistics theorem in the relativistic regimen by Weyl’s conformal quantum mechanics“. International Journal of Quantum Information 14, Nr. 04 (Juni 2016): 1640011. http://dx.doi.org/10.1142/s0219749916400116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper [E. Santamato and F. D. De Martini, Found. Phys. 45 (2015) 858] we presented a complete proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics” (CQG). In this paper, by the same theory, the proof of the spin-statistics theorem (SST) is extended to the relativistic domain in the scenario of curved spacetime. No relativistic quantum field operators are used in the present proof and the particle exchange properties are drawn from rotational invariance rather than from Lorentz invariance. Our relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. As in the nonrelativistic case, we find once more that the “intrinsic helicity” of the elementary particles enters naturally into play. It is therefore this property, not considered in the standard quantum mechanics (SQM), which determines the correct spin-statistics connection observed in Nature.
42

Serot, Brian D., und John Dirk Walecka. „Recent Progress in Quantum Hadrodynamics“. International Journal of Modern Physics E 06, Nr. 04 (Dezember 1997): 515–631. http://dx.doi.org/10.1142/s0218301397000299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Quantum hadrodynamics (QHD) is a framework for describing the nuclear many-body problem as a relativistic system of baryons and mesons. Motivation is given for the utility of such an approach and for the importance of basing it on a local, Lorentz-invariant lagrangian density. Calculations of nuclear matter and finite nuclei in both renormalizable and nonrenormalizable, effective QHD models are discussed. Connections are made between the effective and renormalizable models, as well as between relativistic mean-field theory and more sophisticated treatments. Recent work in QHD involving nuclear structure, electroweak interactions in nuclei, relativistic transport theory, nuclear matter under extreme conditions, and the evaluation of loop diagrams is reviewed.
43

MISHRA, A. K., und G. RAJASEKARAN. „QUANTUM FIELD THEORY OF ORTHOFERMIONS AND ORTHOBOSONS“. Modern Physics Letters A 07, Nr. 36 (30.11.1992): 3425–37. http://dx.doi.org/10.1142/s0217732392002834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We construct the quantum field theory of particles obeying new kinds of quantum statistics, called orthofermi and orthobose statistics. For the orthofermions (orthobosons), the wave function is antisymmetric (symmetric) in one set of indices while no particular symmetry is required for the other set of indices. Nonrelativistic as well as relativistic quantum Held theories with interaction are constructed.
44

YAMAMOTO, KUNIO. „DIFFICULTY OF BOUND STATE PROBLEMS IN RELATIVISTIC QUANTUM FIELD THEORY“. Modern Physics Letters A 13, Nr. 02 (20.01.1998): 87–89. http://dx.doi.org/10.1142/s0217732398000127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In the previous paper, it has been pointed out that, for any model with real bound state in relativistic quantum field theory, Feynman rules do not give the physical amplitude in which the effects of real bound state are considered. By investigating this fact, it is found that an important guiding principle indispensable to discuss real bound state problems is unknown. The way to investigate this principle is not within the framework of relativistic quantum field theory.
45

Larin, S. A. „Fourth-derivative relativistic quantum gravity“. EPJ Web of Conferences 191 (2018): 07002. http://dx.doi.org/10.1051/epjconf/201819107002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We consider relativistic quantum gravity with the action including terms quadratic in the curvature tensor. This model is known to be renormalizable. We demonstrate that the model is also unitary. New expressions for the corresponding Lagrangian and the graviton propagator within dimensional regularization are derived. We argue that the considered model is the proper candidate for the fundamental quantum theory of gravitation.
46

Urbanowski, K. „On the Velocity of Moving Relativistic Unstable Quantum Systems“. Advances in High Energy Physics 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/461987.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
47

RING, P., H. ABUSARA, A. V. AFANASJEV, G. A. LALAZISSIS, T. NIKŠIĆ und D. VRETENAR. „MODERN APPLICATIONS OF COVARIANT DENSITY FUNCTIONAL THEORY“. International Journal of Modern Physics E 20, Nr. 02 (Februar 2011): 235–43. http://dx.doi.org/10.1142/s0218301311017570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Modern applications of Covariant Density Functional Theory (CDFT) are discussed. First we show a systematic investigation of fission barriers in actinide nuclei within constraint relativistic mean field theory allowing for triaxial deformations. In the second part we discuss a microscopic theory of quantum phase transitions (QPT) based on the relativistic generator coordinate method.
48

BHATTACHARYA, B., und K. HAJRA. „QUANTUM FIELD THEORY OF A DISSIPATIVE SYSTEM“. Modern Physics Letters A 10, Nr. 06 (28.02.1995): 467–77. http://dx.doi.org/10.1142/s0217732395000508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Quantum dissipative scalar and fermionic fields are studied here from classical stochastic fields. These classical stochastic fields are the outcome of the relativistic generalization of Nelson's stochastic mechanics based on a new microlocal geometry. Results show that the dissipation is the external classical phenomena whereas quantum nature comes from within (microlocal structure).
49

Zareski, David. „Relativistic Completion of Schrodinger’s Quantum Mechanics by the Ether Theory“. Applied Physics Research 11, Nr. 4 (15.07.2019): 52. http://dx.doi.org/10.5539/apr.v11n4p52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
One recalls that we have shown in our precedent publications that the ether is an elastic isotropic medium. One presents the exact equation and its non-relativistic approximation that govern the ether in presence of a Schwarzschild-Coulomb field to which is submitted a Par(m,e) &nbsp;(particle of mass m &nbsp;and of electric charge e ). We present the exact relativistic solution of this exact equation in the circular case. We prove that the Schr&ouml;dinger equation is such a non-relativistic approximation, that is, is a particular case of the ether elasticity theory. One recalls that the Schr&ouml;dinger equation was obtained by the use of operators and not from the theory of elasticity. It follows that this manner of obtaining this equation from operators is arbitrary and does not permit to obtain its complete relativistic form, but permits to reach absurd conclusions as, e.g., the cat that, at the same moment, is alive and dead. One shows then that other results ensuing from the Schr&ouml;dinger equation are particular cases of the non-relativistic equation that governs the elastic ether, like for example: the Bohr-Sommerfeld condition, and the eigenstates function equation.
50

Ziefle, Reiner Georg. „Newtonian quantum gravity and the derivation of the gravitational constant G and its fluctuations“. Physics Essays 33, Nr. 4 (25.12.2020): 387–94. http://dx.doi.org/10.4006/0836-1398-33.4.387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The theory of gravity “Newtonian quantum gravity” (NQG) is an ingeniously simple theory, because it precisely predicts so-called “general relativistic phenomena,” as, for example, that observed at the binary pulsar PSR B1913 + 16, by just applying Kepler’s second law on quantized gravitational fields. It is an irony of fate that the unsuspecting relativistic physicists still have to effort with the tensor calculations of an imaginary four-dimensional space-time. Everybody can understand that a mass that moves through space must meet more “gravitational quanta” emitted by a certain mass, if it moves faster than if it moves slower or rests against a certain mass, which must cause additional gravitational effects that must be added to the results of Newton's theory of gravity. However, today's physicists cannot recognize this because they are caught in Einstein's relativistic thinking and as general relativity can coincidentally also predict these quantum effects by a mathematically defined four-dimensional curvature of space-time. Advanced NQG is also able to derive the gravitational constant G and explains why G must fluctuate. The “string theory” tries to unify quantum physics with general relativity, but as the so-called “general relativistic” phenomena are quantum physical effects, it cannot be a realistic theory. The “energy wave theory” is lead to absurdity by the author.

Zur Bibliographie