Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Relativistic quantum theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Relativistic quantum theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Relativistic quantum theory"
Frolov, P. A., und A. V. Shebeko. „Relativistic Invariance and Mass Renormalization in Quantum Field Theory“. Ukrainian Journal of Physics 59, Nr. 11 (November 2014): 1060–64. http://dx.doi.org/10.15407/ujpe59.11.1060.
Der volle Inhalt der QuelleGuseinov, I. I. „Quantum Self-Frictional Relativistic Nucleoseed Spinor-Type Tensor Field Theory of Nature“. Advances in High Energy Physics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/6049079.
Der volle Inhalt der QuellePolyzou, W. N., W. Glöckle und H. Witała. „Spin in Relativistic Quantum Theory“. Few-Body Systems 54, Nr. 11 (29.12.2012): 1667–704. http://dx.doi.org/10.1007/s00601-012-0526-8.
Der volle Inhalt der Quelle't Hooft, Gerard. „Beyond relativistic quantum string theory“. Modern Physics Letters A 29, Nr. 26 (27.08.2014): 1430030. http://dx.doi.org/10.1142/s0217732314300304.
Der volle Inhalt der QuelleGreen, H. S. „Quantum Theory of Gravitation“. Australian Journal of Physics 51, Nr. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.
Der volle Inhalt der QuelleChanyal, B. C. „A relativistic quantum theory of dyons wave propagation“. Canadian Journal of Physics 95, Nr. 12 (Dezember 2017): 1200–1207. http://dx.doi.org/10.1139/cjp-2017-0080.
Der volle Inhalt der QuelleLUNDBERG, LARS-ERIK. „QUANTUM THEORY, HYPERBOLIC GEOMETRY AND RELATIVITY“. Reviews in Mathematical Physics 06, Nr. 01 (Februar 1994): 39–49. http://dx.doi.org/10.1142/s0129055x94000043.
Der volle Inhalt der QuelleShin, Ghi Ryang, und Johann Rafelski. „Relativistic classical limit of quantum theory“. Physical Review A 48, Nr. 3 (01.09.1993): 1869–74. http://dx.doi.org/10.1103/physreva.48.1869.
Der volle Inhalt der QuelleAharonov, Yakir, David Z. Albert und Lev Vaidman. „Measurement process in relativistic quantum theory“. Physical Review D 34, Nr. 6 (15.09.1986): 1805–13. http://dx.doi.org/10.1103/physrevd.34.1805.
Der volle Inhalt der QuelleStrocchi, F. „Relativistic Quantum Mechanics and Field Theory“. Foundations of Physics 34, Nr. 3 (März 2004): 501–27. http://dx.doi.org/10.1023/b:foop.0000019625.30165.35.
Der volle Inhalt der QuelleDissertationen zum Thema "Relativistic quantum theory"
Palmer, Matthew. „Relativistic quantum information theory and quantum reference frames“. Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9891.
Der volle Inhalt der QuelleRuschhaupt, Andreas. „A relativistic extension of event enhanced quantum theory“. [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96395864X.
Der volle Inhalt der QuelleWallace, David. „Issues in the foundations of relativistic quantum theory“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270178.
Der volle Inhalt der QuelleSomaroo, Shyamal Sewlal. „Applications of the geometric algebra to relativistic quantum theory“. Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627593.
Der volle Inhalt der QuelleTagliazucchi, Matteo. „Renormalization in non-relativistic quantum mechanics“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21030/.
Der volle Inhalt der QuelleSkaane, Haakon. „Relativistic quantum theory and its applications to atoms and molecules“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267921.
Der volle Inhalt der QuelleAl-Naseri, Haidar. „Quantum kinetic relativistic theory of linearized waves in magnetized plasmas“. Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150292.
Der volle Inhalt der QuelleAlmoukhalalati, Adel. „Applications of variational perturbation theory in relativistic molecular quantum mechanics“. Toulouse 3, 2016. http://www.theses.fr/2016TOU30172.
Der volle Inhalt der QuelleThe father of relativistic quantum mechan ics P. A. M. Dirac predicted that, the more realistic version of quantum mechanics that he established wouId not offer much more when compared to the non-relativistic formulation of quantum mechanics when applied to ordinary atomic and molecular systems. When the relativistic quantum theory was around forty years old, people had started to recognize how important relativistic effects can beeven for the study of atomic and molecular systems. Relativistic effects are manifested via the contraction of atomics and p orbitais, the expansion of atomic d and 1 orbitais, and spin-orbit coupling. A classical example on t he importance of relativistic effects is the band struct ure of metallic gold for which non-relativistic caleulations will lead to an overestimation of the 5d-6p gap predicting a UV absorption band which is compatible with a metal that looks like silver. The thesis focuses on the atomic and molecular calculations within the 4-component relativistic framework. Ln particular, the use of the variational perturbation theory in relativistic framework. The perturbation theory in quantum mechanics is based on partitioning the Hamiltonian H into zeroth-order Hamiltonian Ho and V that forms the perturbation through a para meter lambda. Ln many-body (Rayleigh-Sch rodinger) perturbation theory, we have an exact solution of t he Hamiltonian l/0 , whereas in the variational perturbation theory, we assume to have anoptimized energy for any value of the parameter À. The thesis contains two principal projects, the first project concerns the description of the electron correlation in the relativistic framework. Ln this project , we focused on the perturbative approach to derive t he relativistic formulas nece~sary for the energy in two-electron atoms. T hecorrelation energy is the difference between the exact eigenvalue of the Ha mi ltonian and its expectation value in the Hartree-Fock approximation. The exact eigenvalue is not avail able, but in the non- relativistic domain t he best solution is a full Cl for a given basis. Our main goal, in this project , will be to show that the best solution of the wave equation for the embedded Dirac-Coulomb Hamil tonian, is not a Full Cl, as in thenon- relativistic case, but a MCSCF which uses a Cl development in positive-energy orbitais only, but which keeps rotations between the positive and negative energy orbitais to optimize the projection operator. The second project concerns a study of the effects of t he nuclear volume in the vibrational spectra of diatomic molecules. Ln the early 80s, Theg roup of Professor Eberhardt Tiemann in Hanover used the rotational spectroscopy with high resolution to study a series of diatomic molecules containing heavy a toms like lead in order to establish spectroscopie constants (R. Bond length, vibrational frequency W c etc. ) with a great precision. A molecule AB has several isotopomers according to isotopes atoms A and B and it was weil known at that t ime only the spectrum of eachisotopomer is slightly d iffe rent because of the mass differences between each isotope of the atoms A and B. Prof. Tiemann and his collaborators discovered that we must also take into account the difference in nuclear volume of each isotope. We provide an independent check on previous experimental and t heoretical studies of nuclear volume effects in rotational spectroscopy, notably re-derivation of theory and benchmark previous calculations by 4-component relativistic state of the art correlated calculations
Bird, Christopher Shane. „Infrared regularization in relativistic chiral perturbation theory“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://hdl.handle.net/1828/1062.
Der volle Inhalt der QuelleAiello, Gordon J. „An application of the theory of moments to Euclidean relativistic quantum mechanical scattering“. Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5902.
Der volle Inhalt der QuelleBücher zum Thema "Relativistic quantum theory"
Fanchi, John R. Parametrized relativistic quantum theory. Dordrecht: Kluwer Academic, 1993.
Den vollen Inhalt der Quelle findenFanchi, John R. Parametrized Relativistic Quantum Theory. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1944-3.
Der volle Inhalt der QuelleRelativistic quantum fields. Mineola, N.Y: Dover Publications, 2011.
Den vollen Inhalt der Quelle findenRelativistic quantum mechanics. [Dordrecht, Netherlands: Springer, 2011.
Den vollen Inhalt der Quelle findenPeter, Schwerdtfeger, Hrsg. Relativistic electronic structure theory. Amsterdam: Elsevier Science, 2002.
Den vollen Inhalt der Quelle findenPeter, Schwerdtfeger, Hrsg. Relativistic electronic structure theory. Amsterdam: Elsevier Science, 2002.
Den vollen Inhalt der Quelle findenP, Hwang W. Y., Hrsg. Relativistic quantum mechanics and quantum fields. Singapore: World Scientific, 1991.
Den vollen Inhalt der Quelle findenLandau, Lev Davidovich 1908. Quantum mechanics: Non-relativistic theory. 3. Aufl. Oxford: Butterworth-Heinemann, 1991.
Den vollen Inhalt der Quelle findenM, Lifshit͡s E., Hrsg. Quantum mechanics: Non-relativistic theory. 3. Aufl. Oxford: Pergamon Press, 1991.
Den vollen Inhalt der Quelle finden1908-, Landau Lev Davidovich. Quantum mechanics: Non-relativistic theory. 3. Aufl. Oxford: Pergamon, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Relativistic quantum theory"
Fröhlich, Jürg. „Relativistic Quantum Theory“. In Fundamental Theories of Physics, 237–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46777-7_19.
Der volle Inhalt der QuelleRajasekar, S., und R. Velusamy. „Relativistic Quantum Theory“. In Quantum Mechanics I, 427–60. 2. Aufl. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172178-19.
Der volle Inhalt der QuelleDürr, Detlef, und Dustin Lazarovici. „Relativistic Quantum Theory“. In Understanding Quantum Mechanics, 193–216. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40068-2_11.
Der volle Inhalt der QuelleGhatak, Ajoy, und S. Lokanathan. „Relativistic Theory“. In Quantum Mechanics: Theory and Applications, 779–808. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2130-5_28.
Der volle Inhalt der QuelleBongaarts, Peter. „Towards Relativistic Quantum Theory“. In Quantum Theory, 235–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_15.
Der volle Inhalt der QuelleFolland, Gerald. „Relativistic quantum mechanics“. In Quantum Field Theory, 65–96. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/149/04.
Der volle Inhalt der QuelleGreiner, Walter. „The Hole Theory“. In Relativistic Quantum Mechanics, 233–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02634-2_12.
Der volle Inhalt der QuelleGreiner, Walter. „The Hole Theory“. In Relativistic Quantum Mechanics, 233–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88082-7_12.
Der volle Inhalt der QuelleGreiner, Walter. „The Hole Theory“. In Relativistic Quantum Mechanics, 291–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03425-5_12.
Der volle Inhalt der QuelleAndersen, J. U. „Quantum Theory of Channeling Radiation“. In Relativistic Channeling, 163–76. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-6394-2_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Relativistic quantum theory"
Elze, Hans-Thomas. „Relativistic Quantum Transport Theory“. In NEW STATES OF MATTER IN HADRONIC INTERACTIONS:Pan American Advanced Study Institute. AIP, 2002. http://dx.doi.org/10.1063/1.1513683.
Der volle Inhalt der QuellePage, Don N. „Can quantum cosmology give observational consequences of many-worlds quantum theory?“ In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301589.
Der volle Inhalt der QuelleNovikov-Borodin, A. V., und Andrei Yu Khrennikov. „Quantum Theories and Relativistic Approach“. In QUANTUM THEORY: Reconsideration of Foundations—5. AIP, 2010. http://dx.doi.org/10.1063/1.3431512.
Der volle Inhalt der QuellePombo, Claudia, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Comments on a Discrepancy Between the Relativistic and the Quantum Concepts of Light“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827327.
Der volle Inhalt der QuelleMohr, Peter J. „Quantum electrodynamics perturbation theory“. In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38441.
Der volle Inhalt der QuelleNieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.
Der volle Inhalt der QuelleNelson, Sky E., und Daniel P. Sheehan. „Retroactive Event Determination and Its Relativistic Roots“. In QUANTUM RETROCAUSATION: THEORY AND EXPERIMENT. AIP, 2011. http://dx.doi.org/10.1063/1.3663717.
Der volle Inhalt der QuelleOJIMA, IZUMI. „NON-EQUILIBRIUM LOCAL STATES IN RELATIVISTIC QUANTUM FIELD THEORY“. In Proceedings of the Japan-Italy Joint Workshop on Quantum Open Systems, Quantum Chaos and Quantum Measurement. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704412_0003.
Der volle Inhalt der QuelleLindgren, Ingvar. „Many-body theory“. In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38434.
Der volle Inhalt der QuelleLindgren, Ingvar. „Effective potentials in relativistic many-body theory“. In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38422.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Relativistic quantum theory"
Adami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.
Der volle Inhalt der QuelleGoldin, Gerald A., und David H. Sharp. Diffeomorphism Group Representations in Relativistic Quantum Field Theory. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1415360.
Der volle Inhalt der QuelleSaptsin, Vladimir, und Володимир Миколайович Соловйов. Relativistic quantum econophysics – new paradigms in complex systems modelling. [б.в.], Juli 2009. http://dx.doi.org/10.31812/0564/1134.
Der volle Inhalt der QuelleSaptsin, V., Володимир Миколайович Соловйов und I. Stratychuk. Quantum econophysics – problems and new conceptions. КНУТД, 2012. http://dx.doi.org/10.31812/0564/1185.
Der volle Inhalt der QuelleSoloviev, V. N., und Y. V. Romanenko. Quantum econophysics of bitcoin crises. ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", Mai 2018. http://dx.doi.org/10.31812/0564/2462.
Der volle Inhalt der Quelle