Auswahl der wissenschaftlichen Literatur zum Thema „Relativistic quantum theory“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Relativistic quantum theory" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Relativistic quantum theory"

1

Frolov, P. A., und A. V. Shebeko. „Relativistic Invariance and Mass Renormalization in Quantum Field Theory“. Ukrainian Journal of Physics 59, Nr. 11 (November 2014): 1060–64. http://dx.doi.org/10.15407/ujpe59.11.1060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Guseinov, I. I. „Quantum Self-Frictional Relativistic Nucleoseed Spinor-Type Tensor Field Theory of Nature“. Advances in High Energy Physics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/6049079.

Der volle Inhalt der Quelle
Annotation:
For study of quantum self-frictional (SF) relativistic nucleoseed spinor-type tensor (NSST) field theory of nature (SF-NSST atomic-molecular-nuclear and cosmic-universe systems) we use the complete orthogonal basis sets of22s+1-component column-matrices type SFΨnljmjδ⁎s-relativistic NSST orbitals (Ψδ⁎s-RNSSTO) and SFXnljmjs-relativistic Slater NSST orbitals (Xs-RSNSSTO) through theψnlmlδ⁎-nonrelativistic scalar orbitals (ψδ⁎-NSO) andχnlml-nonrelativistic Slater type orbitals (χ-NSTO), respectively. Hereδ⁎=pl⁎orδ⁎=α⁎andpl⁎=2l+2-α⁎, α⁎are the integer(α⁎=α, -∞<α≤2) or noninteger(α⁎≠α, -∞<α⁎<3) SF quantum numbers, wheres=0,1/2,1,3/2,2,…. We notice that the nonrelativisticψδ⁎-NSO andχ-NSTO orbitals themselves are obtained from the relativisticΨδ⁎s-RNSSTO andXs-RSNSSTO functions fors=0, respectively. The column-matrices-type SFY1jmjls-RNSST harmonics (Y1ls-RNSSTH) andY2jmjls-modified NSSTH (Y2ls-MNSSTH) functions for arbitrary spinsintroduced by the author in the previous papers are also used. The one- and two-center one-range addition theorems forψδ⁎-NSO and nonintegern χ-NSTO orbitals are presented. The quantum SF relativistic nonperturbative theory forVnljmjδ⁎-RNSST potentials (Vδ⁎-RNSSTP) and their derivatives is also suggested. To study the transportations of mass and momentum in nature the quantum SF relativistic NSST gravitational photon (gph) withs=1is introduced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Polyzou, W. N., W. Glöckle und H. Witała. „Spin in Relativistic Quantum Theory“. Few-Body Systems 54, Nr. 11 (29.12.2012): 1667–704. http://dx.doi.org/10.1007/s00601-012-0526-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

't Hooft, Gerard. „Beyond relativistic quantum string theory“. Modern Physics Letters A 29, Nr. 26 (27.08.2014): 1430030. http://dx.doi.org/10.1142/s0217732314300304.

Der volle Inhalt der Quelle
Annotation:
The question "What lies beyond the Quantized String or Superstring Theory?" and the question "What lies beyond Quantum Mechanics itself?" might have one common answer: a discretized, classical version of string theory, which lives on a lattice in Minkowski space. The size a of the meshes on this lattice in Minkowski space is determined by the string slope parameter, α′.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Green, H. S. „Quantum Theory of Gravitation“. Australian Journal of Physics 51, Nr. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Der volle Inhalt der Quelle
Annotation:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chanyal, B. C. „A relativistic quantum theory of dyons wave propagation“. Canadian Journal of Physics 95, Nr. 12 (Dezember 2017): 1200–1207. http://dx.doi.org/10.1139/cjp-2017-0080.

Der volle Inhalt der Quelle
Annotation:
Beginning with the quaternionic generalization of the quantum wave equation, we construct a simple model of relativistic quantum electrodynamics for massive dyons. A new quaternionic form of unified relativistic wave equation consisting of vector and scalar functions is obtained, and also satisfy the quaternionic momentum eigenvalue equation. Keeping in mind the importance of quantum field theory, we investigate the relativistic quantum structure of electromagnetic wave propagation of dyons. The present quantum theory of electromagnetism leads to generalized Lorentz gauge conditions for the electric and magnetic charge of dyons. We also demonstrate the universal quantum wave equations for two four-potentials as well as two four-currents of dyons. The generalized continuity equations for massive dyons in case of quantum fields are expressed. Furthermore, we concluded that the quantum generalization of electromagnetic field equations of dyons can be related to analogous London field equations (i.e., current to electromagnetic fields in and around a superconductor).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

LUNDBERG, LARS-ERIK. „QUANTUM THEORY, HYPERBOLIC GEOMETRY AND RELATIVITY“. Reviews in Mathematical Physics 06, Nr. 01 (Februar 1994): 39–49. http://dx.doi.org/10.1142/s0129055x94000043.

Der volle Inhalt der Quelle
Annotation:
We construct a Lorentz-invariant quantum theory on velocity hyperboloids, with Schrödinger theory as its Euclidean analogue and with the property that the scattering operator is Poincaré invariant. This allows us to introduce the classical space-time concept for a macroscopic description of some properties of the microscopic scattering operator. This gives a completely novel approach to the relation between microscopic quantum theory and classical macroscopic sapce-time concepts. Hyperbolic integral geometry will be developed and used extensively in the construction of the theory, which might be called hyperbolic quantum theory. We stress that this is a radically new kind of relativistic quantum theory, where the term, relativistic, has a new meaning, dictated by the quantum theory. Special relativity was extracted from Maxwell's classical theory and should be properly adapted to quantum theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shin, Ghi Ryang, und Johann Rafelski. „Relativistic classical limit of quantum theory“. Physical Review A 48, Nr. 3 (01.09.1993): 1869–74. http://dx.doi.org/10.1103/physreva.48.1869.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Aharonov, Yakir, David Z. Albert und Lev Vaidman. „Measurement process in relativistic quantum theory“. Physical Review D 34, Nr. 6 (15.09.1986): 1805–13. http://dx.doi.org/10.1103/physrevd.34.1805.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Strocchi, F. „Relativistic Quantum Mechanics and Field Theory“. Foundations of Physics 34, Nr. 3 (März 2004): 501–27. http://dx.doi.org/10.1023/b:foop.0000019625.30165.35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Relativistic quantum theory"

1

Palmer, Matthew. „Relativistic quantum information theory and quantum reference frames“. Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9891.

Der volle Inhalt der Quelle
Annotation:
This thesis is a compilation of research in relativistic quantum information theory, and research in quantum reference frames. The research in the former category provides a fundamental construction of quantum information theory of localised qubits in curved spacetimes. For example, this concerns quantum experiments on free-space photons and electrons in the vicinity of the Earth. From field theory a description of localised qubits that traverse classical trajectories in curved spacetimes is obtained, for photons and massive spin-1/2 fermions. The equations governing the evolution of the two-dimensional quantum state and its absolute phase are determined. Quantum information theory of these qubits is then developed. The Stern-Gerlach measurement formalism for massive spin-1/2 fermions is also derived from field theory. In the latter category of research, I consider the process of changing reference frames in the case where the reference frames are quantum systems. I find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. I explore this process with examples involving quantum reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames provides a theoretical description for this process in quantum experiments, and serves as a first step in developing a relativity principle for theories in which all objects including reference frames are necessarily quantum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ruschhaupt, Andreas. „A relativistic extension of event enhanced quantum theory“. [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96395864X.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wallace, David. „Issues in the foundations of relativistic quantum theory“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Somaroo, Shyamal Sewlal. „Applications of the geometric algebra to relativistic quantum theory“. Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627593.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tagliazucchi, Matteo. „Renormalization in non-relativistic quantum mechanics“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21030/.

Der volle Inhalt der Quelle
Annotation:
A problem of non-relativistic quantum mechanics solved using regularization and renormalization techniques is presented in this thesis. After a general introduction of these techniques, they are applied to a problem in classical electromagnetism and to the bound state of a single quantum particle subjected to a two-dimensional delta-function potential, that is divergent if computed naively solving directly the Schroedinger equation or using the theory of propagators. The regularization techniques used are the cutoff regularization and the dimensional one and they both leads to the same outcome. An effective field theory approach, in which the potential is regularized through the real space scheme, is also presented. After regularization has been performed, the potential is renormalized re-defining the coupling constant. The running of the renormalized coupling constant is also found, i.e. the renormalization group equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Skaane, Haakon. „Relativistic quantum theory and its applications to atoms and molecules“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Al-Naseri, Haidar. „Quantum kinetic relativistic theory of linearized waves in magnetized plasmas“. Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150292.

Der volle Inhalt der Quelle
Annotation:
In this work we have studied linear wave propagation in magnetized plasmas using a fully relativistic kinetic equation of spin-1/2 particles in the long scale approximation. The linearized kinetic equation is very long and complicated, hence we worked with restricted geometries in order to simplify the calculations. The dispersion relation of the relativistic model was calculated and compared with a dispersion relation from a previous work at the semi-relativistic limit. Moreover, a new mode was discovered that survives in the zero temperature limit. The origin of the mode in the kinetic equation was discussed and derived from a non-relativistic kinetic equation from a previous work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Almoukhalalati, Adel. „Applications of variational perturbation theory in relativistic molecular quantum mechanics“. Toulouse 3, 2016. http://www.theses.fr/2016TOU30172.

Der volle Inhalt der Quelle
Annotation:
Le père même de la mécanique quantique relativiste P. A. M. Dirac a prédit que la version plus réaliste de la mécanique quant ique qu'il a misen place n'offrirait pas beaucoup plus par rapport à la formulation non relativiste de la mécanique quantique lorsqu'il est appliqué à des systèmes atomiques et moléculaires ordinaires. Lorsque la théorie quantique relativiste avait environ 40 années, les gens avaient commencé à recogenize à quel point les effets relativistes peuvent être même pour l'étude des systèmes atomiques et moléculaires. Les effets relativistes se manifestent par la contraction dess atomiques et orbitales p, l'expansion des orbitales d et 1 atomiques, et le couplage spin-orbite. Un exemple classique de l'importance des effets relativistes est la structure de bande d'or métallique pour lequel les calculs non-relativistes vont conduire à une surestimation de l'écart 5d - 6p et prédire une bande d'absorption UV qui est compatible avec un métal qui ressemble à l'argent. La thèse porte sur les calculs atomiques et moléculaires dans le cadre relativiste à 4-composantes. En particulier, l'utilisation de la théorie des perturbations variationnelle dans un cadre relativiste. La théorie des perturbations dans la mécanique quantique, est basée sur le partitionnement du Hamiltonien il en l'Hamiltonien Ho a l'ordre zéro et \Î qui forme la perturbation par le biais d'un paramètre lambda. Dans la théorie des perturbations à N-corps {Rayleigh-Schrodinger), nous disposons d 'une solution exacte de l'Hamiltonien Ho. Alors que dans la théorie des perturbations variationnelle, nous supposons d'avoir une énergie optimisée pour toute valeur du paramètre À. La thèse contient deux projets principaux. Le premier projet concerne la discription de la corrélation électronique dans le cadre relativiste. Dans ce projet, nous nous sommes concentrés sur l'approche perturbative pour dériver des formules necessiry relativiste de l'énergie dans les atomes à deux électrons. L'énergie de corrélation est la différence entre la valeur propre exacte de l'hamiltonien et sa valeur d'attente dans l'approximationHartree-Fock. La valeur propre exacte ne sont pas disponibles, mais dans le domaine non-relativiste la meilleure solution est un Cl complet pour une base donnée. Notre objectif principal, dans ce projet, est de montrer que la meilleure solution de l'équation d'onde pour l' Hamiltonien DiracCoulomb, n'est pas un Cl complète, comme dans le cas non-relativis te, mais un MCSCF q ui utilise un développement Cl en orbitales énergiepositive seulement, mais qui permet la rotation entre les o rbitales d 'énerg ie positive et négative afin d 'optimiser l'opérateur de project ion. Le second projet concerne une étude sur les effets du volume nucléaire dans les spectres de vibration des molécules d iatomiques. Au début desannées 80, le groupe du professeur Eberhardt T iemann à Hanovre a util isé la spectroscopie de rotation avec une haute résolution pour étudier unesérie de molécules diatomiques contenant des atomes lo urds comme le plomb, afin d'établir des constantes spectroscopiques (Re longueur de laliaison, la fréquence vibratoire w. Etc. ) avec une grande précision. Une molécule AB a plusieurs isotopomères selon les isotopes des atomes A etB, et il était bien connu à cette époque que le spectre de chaque isotopomère est légèrement différente en raison des d ifférences de masse entrechaque isotope de l'atomes A et B. Prof. Tiemann et ses collaborateurs découvert que nous devons également ten ir compte de la différence devolume nucléa ire de chaque isotope. Nous fournissons un contrôle indépendant sur les études expérimentales et t héoriques précédentes d'effetsde volume nucléaires en spectroscopie de rotation, notamment re-calcul de la t héorie et des calculs antérieurs de référence par l'état relativiste4-composantes de l'art corrélée calculs
The father of relativistic quantum mechan ics P. A. M. Dirac predicted that, the more realistic version of quantum mechanics that he established wouId not offer much more when compared to the non-relativistic formulation of quantum mechanics when applied to ordinary atomic and molecular systems. When the relativistic quantum theory was around forty years old, people had started to recognize how important relativistic effects can beeven for the study of atomic and molecular systems. Relativistic effects are manifested via the contraction of atomics and p orbitais, the expansion of atomic d and 1 orbitais, and spin-orbit coupling. A classical example on t he importance of relativistic effects is the band struct ure of metallic gold for which non-relativistic caleulations will lead to an overestimation of the 5d-6p gap predicting a UV absorption band which is compatible with a metal that looks like silver. The thesis focuses on the atomic and molecular calculations within the 4-component relativistic framework. Ln particular, the use of the variational perturbation theory in relativistic framework. The perturbation theory in quantum mechanics is based on partitioning the Hamiltonian H into zeroth-order Hamiltonian Ho and V that forms the perturbation through a para meter lambda. Ln many-body (Rayleigh-Sch rodinger) perturbation theory, we have an exact solution of t he Hamiltonian l/0 , whereas in the variational perturbation theory, we assume to have anoptimized energy for any value of the parameter À. The thesis contains two principal projects, the first project concerns the description of the electron correlation in the relativistic framework. Ln this project , we focused on the perturbative approach to derive t he relativistic formulas nece~sary for the energy in two-electron atoms. T hecorrelation energy is the difference between the exact eigenvalue of the Ha mi ltonian and its expectation value in the Hartree-Fock approximation. The exact eigenvalue is not avail able, but in the non- relativistic domain t he best solution is a full Cl for a given basis. Our main goal, in this project , will be to show that the best solution of the wave equation for the embedded Dirac-Coulomb Hamil tonian, is not a Full Cl, as in thenon- relativistic case, but a MCSCF which uses a Cl development in positive-energy orbitais only, but which keeps rotations between the positive and negative energy orbitais to optimize the projection operator. The second project concerns a study of the effects of t he nuclear volume in the vibrational spectra of diatomic molecules. Ln the early 80s, Theg roup of Professor Eberhardt Tiemann in Hanover used the rotational spectroscopy with high resolution to study a series of diatomic molecules containing heavy a toms like lead in order to establish spectroscopie constants (R. Bond length, vibrational frequency W c etc. ) with a great precision. A molecule AB has several isotopomers according to isotopes atoms A and B and it was weil known at that t ime only the spectrum of eachisotopomer is slightly d iffe rent because of the mass differences between each isotope of the atoms A and B. Prof. Tiemann and his collaborators discovered that we must also take into account the difference in nuclear volume of each isotope. We provide an independent check on previous experimental and t heoretical studies of nuclear volume effects in rotational spectroscopy, notably re-derivation of theory and benchmark previous calculations by 4-component relativistic state of the art correlated calculations
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bird, Christopher Shane. „Infrared regularization in relativistic chiral perturbation theory“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://hdl.handle.net/1828/1062.

Der volle Inhalt der Quelle
Annotation:
Chiral perturbation theory is a useful tool in the study of low energy reactions involving light particles. However the inclusion of heavy particles in chiral perturbation theory results in large contributions from loop diagrams which violate the standard power counting scheme. We review two methods, referred to as heavy baryon chiral perturbation theory and infrared regularization, which remove the high energy effects of the heavy particles and which therefore do not violate the power counting scheme. We then use these two methods to calculate the amplitude for pion photoproduction to fourth order and prove that the two amplitudes are equivalent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Aiello, Gordon J. „An application of the theory of moments to Euclidean relativistic quantum mechanical scattering“. Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5902.

Der volle Inhalt der Quelle
Annotation:
One recipe for mathematically formulating a relativistic quantum mechanical scattering theory utilizes a two-Hilbert space approach, denoted by $\mathcal{H}$ and $\mathcal{H}_{0}$, upon each of which a unitary representation of the Poincaré Lie group is given. Physically speaking, $\mathcal{H}$ models a complicated interacting system of particles one wishes to understand, and $\mathcal{H}_{0}$ an associated simpler (i.e., free/noninteracting) structure one uses to construct 'asymptotic boundary conditions" on so-called scattering states in $\mathcal{H}$. Simply put, $\mathcal{H}_{0}$ is an attempted idealization of $\mathcal{H}$ one hopes to realize in the large time limits $t\rightarrow\pm\infty$. The above considerations lead to the study of the existence of strong limits of operators of the form $e^{iHt}Je^{-iH_{0}t}$, where $H$ and $H_{0}$ are self-adjoint generators of the time translation subgroup of the unitary representations of the Poincaré group on $\mathcal{H}$ and $\mathcal{H}_{0}$, and $J$ is a contrived mapping from $\mathcal{H}_{0}$ into $\mathcal{H}$ that provides the internal structure of the scattering asymptotes. The existence of said limits in the context of Euclidean quantum theories (satisfying precepts known as the Osterwalder-Schrader axioms) depends on the choice of $J$ and leads to a marvelous connection between this formalism and a beautiful area of classical mathematical analysis known as the Stieltjes moment problem, which concerns the relationship between numerical sequences $\{\mu_{n}\}_{n=0}^{\infty}$ and the existence/uniqueness of measures $\alpha(x)$ on the half-line satisfying \begin{equation*} \mu_{n}=\int_{0}^{\infty}x^{n}d\alpha(x). \end{equation*}
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Relativistic quantum theory"

1

Fanchi, John R. Parametrized relativistic quantum theory. Dordrecht: Kluwer Academic, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fanchi, John R. Parametrized Relativistic Quantum Theory. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1944-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Relativistic quantum fields. Mineola, N.Y: Dover Publications, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Relativistic quantum mechanics. [Dordrecht, Netherlands: Springer, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peter, Schwerdtfeger, Hrsg. Relativistic electronic structure theory. Amsterdam: Elsevier Science, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Peter, Schwerdtfeger, Hrsg. Relativistic electronic structure theory. Amsterdam: Elsevier Science, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

P, Hwang W. Y., Hrsg. Relativistic quantum mechanics and quantum fields. Singapore: World Scientific, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Landau, Lev Davidovich 1908. Quantum mechanics: Non-relativistic theory. 3. Aufl. Oxford: Butterworth-Heinemann, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

M, Lifshit͡s E., Hrsg. Quantum mechanics: Non-relativistic theory. 3. Aufl. Oxford: Pergamon Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

1908-, Landau Lev Davidovich. Quantum mechanics: Non-relativistic theory. 3. Aufl. Oxford: Pergamon, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Relativistic quantum theory"

1

Fröhlich, Jürg. „Relativistic Quantum Theory“. In Fundamental Theories of Physics, 237–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46777-7_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rajasekar, S., und R. Velusamy. „Relativistic Quantum Theory“. In Quantum Mechanics I, 427–60. 2. Aufl. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172178-19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dürr, Detlef, und Dustin Lazarovici. „Relativistic Quantum Theory“. In Understanding Quantum Mechanics, 193–216. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40068-2_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ghatak, Ajoy, und S. Lokanathan. „Relativistic Theory“. In Quantum Mechanics: Theory and Applications, 779–808. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2130-5_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bongaarts, Peter. „Towards Relativistic Quantum Theory“. In Quantum Theory, 235–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Folland, Gerald. „Relativistic quantum mechanics“. In Quantum Field Theory, 65–96. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/149/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Greiner, Walter. „The Hole Theory“. In Relativistic Quantum Mechanics, 233–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02634-2_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Greiner, Walter. „The Hole Theory“. In Relativistic Quantum Mechanics, 233–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88082-7_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Greiner, Walter. „The Hole Theory“. In Relativistic Quantum Mechanics, 291–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03425-5_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Andersen, J. U. „Quantum Theory of Channeling Radiation“. In Relativistic Channeling, 163–76. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-6394-2_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Relativistic quantum theory"

1

Elze, Hans-Thomas. „Relativistic Quantum Transport Theory“. In NEW STATES OF MATTER IN HADRONIC INTERACTIONS:Pan American Advanced Study Institute. AIP, 2002. http://dx.doi.org/10.1063/1.1513683.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Page, Don N. „Can quantum cosmology give observational consequences of many-worlds quantum theory?“ In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Novikov-Borodin, A. V., und Andrei Yu Khrennikov. „Quantum Theories and Relativistic Approach“. In QUANTUM THEORY: Reconsideration of Foundations—5. AIP, 2010. http://dx.doi.org/10.1063/1.3431512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pombo, Claudia, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „Comments on a Discrepancy Between the Relativistic and the Quantum Concepts of Light“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mohr, Peter J. „Quantum electrodynamics perturbation theory“. In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38441.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko und Theo M. Nieuwenhuizen. „The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes“. In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nelson, Sky E., und Daniel P. Sheehan. „Retroactive Event Determination and Its Relativistic Roots“. In QUANTUM RETROCAUSATION: THEORY AND EXPERIMENT. AIP, 2011. http://dx.doi.org/10.1063/1.3663717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

OJIMA, IZUMI. „NON-EQUILIBRIUM LOCAL STATES IN RELATIVISTIC QUANTUM FIELD THEORY“. In Proceedings of the Japan-Italy Joint Workshop on Quantum Open Systems, Quantum Chaos and Quantum Measurement. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704412_0003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lindgren, Ingvar. „Many-body theory“. In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38434.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lindgren, Ingvar. „Effective potentials in relativistic many-body theory“. In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Relativistic quantum theory"

1

Adami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Goldin, Gerald A., und David H. Sharp. Diffeomorphism Group Representations in Relativistic Quantum Field Theory. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1415360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Saptsin, Vladimir, und Володимир Миколайович Соловйов. Relativistic quantum econophysics – new paradigms in complex systems modelling. [б.в.], Juli 2009. http://dx.doi.org/10.31812/0564/1134.

Der volle Inhalt der Quelle
Annotation:
This work deals with the new, relativistic direction in quantum econophysics, within the bounds of which a change of the classical paradigms in mathematical modelling of socio-economic system is offered. Classical physics proceeds from the hypothesis that immediate values of all the physical quantities, characterizing system’s state, exist and can be accurately measured in principle. Non-relativistic quantum mechanics does not reject the existence of the immediate values of the classical physical quantities, nevertheless not each of them can be simultaneously measured (the uncertainty principle). Relativistic quantum mechanics rejects the existence of the immediate values of any physical quantity in principle, and consequently the notion of the system state, including the notion of the wave function, which becomes rigorously nondefinable. The task of this work consists in econophysical analysis of the conceptual fundamentals and mathematical apparatus of the classical physics, relativity theory, non-relativistic and relativistic quantum mechanics, subject to the historical, psychological and philosophical aspects and modern state of the socio-economic modeling problem. We have shown that actually and, virtually, a long time ago, new paradigms of modeling were accepted in the quantum theory, within the bounds of which the notion of the physical quantity operator becomes the primary fundamental conception(operator is a mathematical image of the procedure, the action), description of the system dynamics becomes discrete and approximate in its essence, prediction of the future, even in the rough, is actually impossible when setting aside the aftereffect i.e. the memory. In consideration of the analysis conducted in the work we suggest new paradigms of the economical-mathematical modeling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Saptsin, V., Володимир Миколайович Соловйов und I. Stratychuk. Quantum econophysics – problems and new conceptions. КНУТД, 2012. http://dx.doi.org/10.31812/0564/1185.

Der volle Inhalt der Quelle
Annotation:
This article is dedicated to the econophysical analysis of conceptual fundamentals and mathematical apparatus of classical physics, relativity theory, non-relativistic and relativistic quantum mechanics. The historical and methodological aspects as well as the modern state of the problem of the socio-economic modeling are considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Soloviev, V. N., und Y. V. Romanenko. Quantum econophysics of bitcoin crises. ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", Mai 2018. http://dx.doi.org/10.31812/0564/2462.

Der volle Inhalt der Quelle
Annotation:
The attempts to create an adequate model of socio-economic critical events, which, as it has been historically proven, are almost permanent, were, are and will always be made. Actually, it is a supertask, impossible to solve. However, the potentially useful solutions, local in time or other socio-economic logistic coordinates, are possible. In fact, they have to be the object of interest for a real and effective economic science. Econophysics is a young interdisciplinary scientific field, which developed and acquired its name at the end of the last century. Quantum econophysics, a direction distinguished by the use of mathematical apparatus of quantum mechanics as well as its fundamental conceptual ideas and relativistic aspects, developed within its boundaries just a couple of years later, in the first decade of the 21-st century.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie