Zeitschriftenartikel zum Thema „Relativistic Optics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Relativistic Optics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Relativistic Optics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Keitel, Christoph H. „Relativistic quantum optics“. Contemporary Physics 42, Nr. 6 (November 2001): 353–63. http://dx.doi.org/10.1080/00107510110084723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Miron, Radu, und Tomoaki Kawaguchi. „Relativistic geometrical optics“. International Journal of Theoretical Physics 30, Nr. 11 (November 1991): 1521–43. http://dx.doi.org/10.1007/bf00675616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Umstadter, Donald, Szu-yuan Chen, Robert Wagner, Anatoly Maksimchuk und Gennady Sarkisov. „Nonlinear optics in relativistic plasmas“. Optics Express 2, Nr. 7 (30.03.1998): 282. http://dx.doi.org/10.1364/oe.2.000282.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mourou, Gerard A., Toshiki Tajima und Sergei V. Bulanov. „Optics in the relativistic regime“. Reviews of Modern Physics 78, Nr. 2 (28.04.2006): 309–71. http://dx.doi.org/10.1103/revmodphys.78.309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Miron, R., und G. Zet. „Relativistic optics of nondispersive media“. Foundations of Physics 25, Nr. 9 (September 1995): 1371–82. http://dx.doi.org/10.1007/bf02055336.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

KIM, Chul Min, und Chang Hee NAM. „Relativistic Optics Explored with PW Lasers“. Physics and High Technology 24, Nr. 4 (30.04.2015): 9. http://dx.doi.org/10.3938/phit.24.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Thompson, Robert T. „General relativistic contributions in transformation optics“. Journal of Optics 14, Nr. 1 (15.12.2011): 015102. http://dx.doi.org/10.1088/2040-8978/14/1/015102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zet, G., und V. Manta. „Post-Newtonian estimation in relativistic optics“. International Journal of Theoretical Physics 32, Nr. 6 (Juni 1993): 1013–20. http://dx.doi.org/10.1007/bf01215307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Janner, A. „Looking for a relativistic crystal optics“. Ferroelectrics 161, Nr. 1 (November 1994): 191–206. http://dx.doi.org/10.1080/00150199408213367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Abe, Y., K. F. F. Law, Ph Korneev, S. Fujioka, S. Kojima, S. H. Lee, S. Sakata et al. „Whispering Gallery Effect in Relativistic Optics“. JETP Letters 107, Nr. 6 (März 2018): 351–54. http://dx.doi.org/10.1134/s0021364018060012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Umstadter, D., und T. B. Norris. „Nonlinear Optics With Relativistic Electrons [Guest Editorial]“. IEEE Journal of Quantum Electronics 33, Nr. 11 (November 1997): 1877–78. http://dx.doi.org/10.1109/jqe.1997.641304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mourou, Gérard A., und Victor Yanovsky. „Relativistic Optics: A Gateway to Attosecond Physics“. Optics and Photonics News 15, Nr. 5 (03.05.2004): 40. http://dx.doi.org/10.1364/opn.15.5.000040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mourou, Gérard A. „Ultraintense lasers: relativistic nonlinear optics and applications“. Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, Nr. 10 (Dezember 2001): 1407–14. http://dx.doi.org/10.1016/s1296-2147(01)01278-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Atakishiyev, Natig M., Wolfgang Lassner und Kurt Bernardo Wolf. „The relativistic coma aberration. I. Geometrical optics“. Journal of Mathematical Physics 30, Nr. 11 (November 1989): 2457–62. http://dx.doi.org/10.1063/1.528524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zheng, Qianbing, und Takayoshi Kobayashi. „Quantum Optics as a Relativistic Theory of Light“. Physics Essays 9, Nr. 3 (September 1996): 447–59. http://dx.doi.org/10.4006/1.3029255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kaplan, A. E. „Relativistic nonlinear optics of a single cyclotron electron“. Physical Review Letters 56, Nr. 5 (03.02.1986): 456–59. http://dx.doi.org/10.1103/physrevlett.56.456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ribeiro, M. A., und C. R. Paiva. „Relativistic optics in moving media with spacetime algebra“. European Physical Journal Applied Physics 49, Nr. 3 (03.02.2010): 33003. http://dx.doi.org/10.1051/epjap/2009146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Echkina, E. Yu, und I. N. Inovenkov. „Current State and Development Prospects of Relativistic Optics“. Computational Mathematics and Modeling 31, Nr. 1 (Januar 2020): 13–18. http://dx.doi.org/10.1007/s10598-020-09472-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Atakishiyev, Natig M., Wolfgang Lassner und Kurt Bernardo Wolf. „The relativistic coma aberration. II. Helmholtz wave optics“. Journal of Mathematical Physics 30, Nr. 11 (November 1989): 2463–68. http://dx.doi.org/10.1063/1.528525.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chyla, W. T. „I. Geometrical optics of variable-frequency light rays:Theoretical basis“. Canadian Journal of Physics 78, Nr. 8 (01.08.2000): 721–45. http://dx.doi.org/10.1139/p00-023.

Der volle Inhalt der Quelle
Annotation:
A variable-frequency light ray (VF ray) is a new concept in optics; it is a ray that is monochromatic at every point of the path (no frequency spread) but its frequency changes along the path due to interactions occurring along that path. For example, the frequency of the light ray can be affected by gravitational time dilation, reflection from a moving mirror, or coherent Raman scattering. Since the Fermat principle of least time (PLT) implicitly assumes that the frequency of the light ray is an irrelevant constant, the PLT-based geometrical optics is insufficient to handle propagation of VF rays. In this paper, we derive a new extremum principle (NEP) that is sensitive to changes of frequency along the path of the light ray and constitutes a basis for geometrical optics of VF rays. The NEP is derived directly from the principle of least action applied to the quantized electromagnetic field associated with the light ray propagating in a vacuum or in a transparent material medium in the presence of the gravitational field. The relationship between the NEP, the classical version of the Fermat principle, and the general relativistic generalization of the Fermat principle (the extremum principle for null geodesics) is discussed in detail. Applications of the NEP are suggested in the nonrelativistic, special relativistic, and general relativistic regimes. PACS Nos.: 42.15-i, 12.20-m, 04.20-q
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Moskvin, Alexander. „Charge Transfer Transitions and Circular Magnetooptics in Ferrites“. Magnetochemistry 8, Nr. 8 (28.07.2022): 81. http://dx.doi.org/10.3390/magnetochemistry8080081.

Der volle Inhalt der Quelle
Annotation:
The concept of charge transfer (CT) transitions in ferrites is based on the cluster approach and takes into account the relevant interactions, such as the low-symmetry crystal field, spin–orbital, Zeeman, exchange and exchange-relativistic interactions. For all its simplicity, this concept yields a reliable qualitative and quantitative microscopic explanation of spectral, concentration, temperature and field dependencies of optic and magneto-optic properties ranging from the isotropic absorption and optical anisotropy to circular magneto-optics. In this review paper, starting with a critical analysis of the fundamental shortcomings of the “first-principles” density functional theory (DFT-based) band theory, we present the main ideas and techniques of the cluster theory of the CT transitions to be main contributors to circular magneto-optics of ferrites. Numerous examples of comparison of cluster theory with experimental data for orthoferrites, iron garnets and other ferrites are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Veisz, Laszlo. „Author Correction: Plasma optics: Reflections off a relativistic mirror“. Nature Physics 17, Nr. 8 (25.06.2021): 975. http://dx.doi.org/10.1038/s41567-021-01303-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Grado-Caffaro, M. A., und M. Grado-Caffaro. „Refractive index and material dispersion in relativistic electron optics“. Optik 116, Nr. 11 (Oktober 2005): 551–52. http://dx.doi.org/10.1016/j.ijleo.2005.04.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Umstadter, D. P., C. Barty, M. Perry und G. A. Mourou. „Tabletop, Ultrahigh-Intensity Lasers: Dawn of Nonlinear Relativistic Optics“. Optics and Photonics News 9, Nr. 7 (01.07.1998): 40. http://dx.doi.org/10.1364/opn.9.7.000040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bulanov, S. V., T. Zh Esirkepov, D. Habs, F. Pegoraro und T. Tajima. „Relativistic laser-matter interaction and relativistic laboratory astrophysics“. European Physical Journal D 55, Nr. 2 (01.05.2009): 483–507. http://dx.doi.org/10.1140/epjd/e2009-00138-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Boyd, T. J. M., und R. Ondarza-Rovira. „Comment on “Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror"“. European Physical Journal D 58, Nr. 1 (13.04.2010): 137–38. http://dx.doi.org/10.1140/epjd/e2010-00096-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Vigoureux, J. M., und Ph Grossel. „A relativistic‐like presentation of optics in stratified planar media“. American Journal of Physics 61, Nr. 8 (August 1993): 707–12. http://dx.doi.org/10.1119/1.17198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Xia, Guoqiang, Weijian Zheng, Zhenggang Lei und Ruolan Zhang. „Rigorous coupled wave analysis of acousto-optics with relativistic considerations“. Journal of the Optical Society of America A 32, Nr. 9 (03.08.2015): 1594. http://dx.doi.org/10.1364/josaa.32.001594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Pukhov, A., und D. an der Brügge. „Reply to Comment on “Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror"“. European Physical Journal D 58, Nr. 1 (20.04.2010): 139–40. http://dx.doi.org/10.1140/epjd/e2010-00100-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Lamprou, Theocharis, Rodrigo Lopez-Martens, Stefan Haessler, Ioannis Liontos, Subhendu Kahaly, Javier Rivera-Dean, Philipp Stammer et al. „Quantum-Optical Spectrometry in Relativistic Laser–Plasma Interactions Using the High-Harmonic Generation Process: A Proposal“. Photonics 8, Nr. 6 (29.05.2021): 192. http://dx.doi.org/10.3390/photonics8060192.

Der volle Inhalt der Quelle
Annotation:
Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Curcio, Alessandro, Maria Pia Anania, Fabrizio Giuseppe Bisesto, Massimo Ferrario, Francesco Filippi, Danilo Giulietti und Massimo Petrarca. „Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas“. EPJ Web of Conferences 167 (2018): 01003. http://dx.doi.org/10.1051/epjconf/201816701003.

Der volle Inhalt der Quelle
Annotation:
The relativistic self focusing of an ultraintense laser propagating through an underdense plasma is analyzed from a geometrical optics point of view, exploiting the classical hamiltonian formalism. The distribution of the laser intensity along the self-generated plasma channel is studied and compared to measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Eisenstaedt, Jean. „From Newton to Einstein: A forgotten relativistic optics of moving bodies“. American Journal of Physics 75, Nr. 8 (August 2007): 741–46. http://dx.doi.org/10.1119/1.2742398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Jahn, Olga, Vyacheslav E. Leshchenko, Paraskevas Tzallas, Alexander Kessel, Mathias Krüger, Andreas Münzer, Sergei A. Trushin et al. „Towards intense isolated attosecond pulses from relativistic surface high harmonics“. Optica 6, Nr. 3 (04.03.2019): 280. http://dx.doi.org/10.1364/optica.6.000280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Polyzou, W. N. „Relativistic Few-Body Physics“. Few-Body Systems 55, Nr. 8-10 (18.12.2013): 589–97. http://dx.doi.org/10.1007/s00601-013-0761-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Nayak, Malaya K., und Rajat K. Chaudhuri. „Relativistic coupled cluster method“. European Physical Journal D 37, Nr. 2 (25.10.2005): 171–76. http://dx.doi.org/10.1140/epjd/e2005-00279-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Afanasjev, A. V. „Superdeformations in Relativistic and Non-Relativistic Mean Field Theories“. Physica Scripta T88, Nr. 1 (2000): 10. http://dx.doi.org/10.1238/physica.topical.088a00010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kessel, Alexander, Vyacheslav E. Leshchenko, Olga Jahn, Mathias Krüger, Andreas Münzer, Alexander Schwarz, Vladimir Pervak et al. „Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA“. Optica 5, Nr. 4 (09.04.2018): 434. http://dx.doi.org/10.1364/optica.5.000434.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hacyan, Shahen. „Relativistic accelerating electromagnetic waves“. Journal of Optics 13, Nr. 10 (29.09.2011): 105710. http://dx.doi.org/10.1088/2040-8978/13/10/105710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Безбородов, С. В., И. И. Тупицын, А. В. Малышев, Д. В. Миронова und В. М. Шабаев. „Расчеты релятивистских, корреляционных, ядерных и квантово-электродинамических поправок к энергиям и потенциалам ионизации основного состояния литиеподобных ионов“. Оптика и спектроскопия 130, Nr. 10 (2022): 1471. http://dx.doi.org/10.21883/os.2022.10.53615.4056-22.

Der volle Inhalt der Quelle
Annotation:
This paper presents all the leading contributions to the relativistic total energies and ionization potentials of the ground state of lithium-like ions with a nuclear charge in the range Z = 3 − 20. Correlation, relativistic and quantum-electrodynamics corrections as well as contributions due to the finite size of the nucleus (field shift) and finite mass of the nucleus (recoil effect) are evaluated. Relativistic calculations are performed by means of the configuration-interaction method in the basis of the Dirac-Fock-Sturm orbitals using the Dirac-Coulomb-Breit Hamiltonian.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kapteyn, Henry C., und Margaret M. Murnane. „Relativistic pulse compression“. Journal of the Optical Society of America B 8, Nr. 8 (01.08.1991): 1657. http://dx.doi.org/10.1364/josab.8.001657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Umstadter, D., S. Y. Chen, A. Maksimchuk, G. Mourou und R. Wagner. „Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons“. Science 273, Nr. 5274 (26.07.1996): 472–75. http://dx.doi.org/10.1126/science.273.5274.472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Lin, Jinpu, James H. Easter, Karl Krushelnick, Mark Mathis, Jian Dong, A. G. R. Thomas und John Nees. „Focus optimization at relativistic intensity with high numerical aperture and adaptive optics“. Optics Communications 421 (August 2018): 79–82. http://dx.doi.org/10.1016/j.optcom.2018.03.075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Evans, M. W. „On the observability of the fieldB (3): Relativistic effects in magneto-optics“. Foundations of Physics Letters 8, Nr. 5 (Oktober 1995): 459–66. http://dx.doi.org/10.1007/bf02186581.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Rideout, David, Thomas Jennewein, Giovanni Amelino-Camelia, Tommaso F. Demarie, Brendon L. Higgins, Achim Kempf, Adrian Kent et al. „Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities“. Classical and Quantum Gravity 29, Nr. 22 (18.10.2012): 224011. http://dx.doi.org/10.1088/0264-9381/29/22/224011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Gordon, D. F., B. Hafizi und M. H. Helle. „Solution of relativistic quantum optics problems using clusters of graphical processing units“. Journal of Computational Physics 267 (Juni 2014): 50–62. http://dx.doi.org/10.1016/j.jcp.2014.02.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Widom, A., J. Swain, Y. N. Srivastava, M. Blasone und G. Vitiello. „Zero-point energy and photon spin-induced diffraction phenomena“. International Journal of Geometric Methods in Modern Physics 17, supp01 (20.03.2020): 2040006. http://dx.doi.org/10.1142/s021988782040006x.

Der volle Inhalt der Quelle
Annotation:
A brief review of our previously introduced forward and backward in time formalism for non-relativistic electron diffraction and its relativistic extension to study photons in time and space is presented. The zero-point energy in the Planck black body spectrum emerges naturally once time-symmetric motion — inherent in Maxwell equations — is invoked for photons. A study of two-slit experiments for slits smaller than the wavelength of the photon unravels novel phenomena due to the spin of the photon. Our proposed experiments are within reach of present technology and could be of interest for modern imaging and quantum optics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

ZHOU, H. Q., und B. S. ZOU. „RELATIVISTIC EFFECTS IN TWO PHOTON DECAY OF 0-+ QUARKONIUM“. International Journal of Modern Physics A 20, Nr. 08n09 (10.04.2005): 1939–42. http://dx.doi.org/10.1142/s0217751x05023682.

Der volle Inhalt der Quelle
Annotation:
Relativistic effects in two photon decay of 0-+ quarkonium are investigated with a relativistic phenomenological approach. Comparing with the non-relativistic approximation, the relativistic phenomenological approach gives corrections coming from three sources: [Formula: see text] relative momentum distribution, [Formula: see text] relative energy distribution and description of quark spinors in the meson. These relativistic effects are studied in detail for [Formula: see text] and [Formula: see text] systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Tudor, Tiberiu, und Gabriel Voitcu. „Revisiting Poincaré Sphere and Pauli Algebra in Polarization Optics“. Photonics 11, Nr. 4 (17.04.2024): 379. http://dx.doi.org/10.3390/photonics11040379.

Der volle Inhalt der Quelle
Annotation:
We present one of the main lines of development of Poincaré sphere representation in polarization optics, by using largely some of our contributions in the field. We refer to the action of deterministic devices, specifically the diattenuators, on the partial polarized light. On one hand, we emphasize the intimate connection between the Pauli algebraic analysis and the Poincaré ball representation of this interaction. On the other hand, we bring to the foreground the close similarity between the law of composition of the Poincaré vectors of the diattenuator and of polarized light and the law of composition of relativistic admissible velocities. These two kinds of vectors are isomorphic, and they are “imprisoned” in a sphere of finite radius, standardizable at a radius of one, i.e., Poincaré sphere.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Blackman, Eric G., und George B. Field. „Relativistic magnetic reconnection“. Physica Scripta T52 (01.01.1994): 93–95. http://dx.doi.org/10.1088/0031-8949/1994/t52/016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ashfaque, J., J. Lynch und P. Strange. „Relativistic quantum backflow“. Physica Scripta 94, Nr. 12 (30.10.2019): 125107. http://dx.doi.org/10.1088/1402-4896/ab265c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie