Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Reinforcing bars Fatigue“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reinforcing bars Fatigue" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Reinforcing bars Fatigue"
Kopas, Peter, Lenka Jakubovičová, Milan Vaško und Marián Handrik. „Fatigue Resistance of Reinforcing Steel Bars“. Procedia Engineering 136 (2016): 193–97. http://dx.doi.org/10.1016/j.proeng.2016.01.196.
Der volle Inhalt der QuelleWang, Wei, Jie Chen, Bo Diao, Xuefei Guan, Jingjing He und Min Huang. „Bayesian Fatigue Life Prediction of Corroded Steel Reinforcing Bars“. Advances in Civil Engineering 2021 (28.12.2021): 1–15. http://dx.doi.org/10.1155/2021/4632152.
Der volle Inhalt der QuelleHyland, C. W. K., und A. Ouwejan. „Fatigue of reinforcing bars during hydro-demolition“. Journal of Physics: Conference Series 843 (Mai 2017): 012033. http://dx.doi.org/10.1088/1742-6596/843/1/012033.
Der volle Inhalt der QuelleLi, Shibin, Hongwei Tang, Qiang Gui und Zhongguo John Ma. „Fatigue behavior of naturally corroded plain reinforcing bars“. Construction and Building Materials 152 (Oktober 2017): 933–42. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.173.
Der volle Inhalt der QuelleSchwarzkopf, Michael. „Fatigue Design of Tack-Welded Mesh Reinforcing Bars“. Structural Engineering International 5, Nr. 2 (Mai 1995): 102–6. http://dx.doi.org/10.2749/101686695780601240.
Der volle Inhalt der QuelleReal, Enrique, Cristina Rodríguez, A. Fernández Canteli und F. Javier Belzunce. „Influence of the Shot Peening Process on the Fatigue Behaviour of Duplex Stainless Steel Reinforcing Bars“. Materials Science Forum 539-543 (März 2007): 4981–86. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4981.
Der volle Inhalt der QuelleKoulouris, Konstantinos F., und Charis Apostolopoulos. „Fatigue damage indicator of different types of reinforcing bars“. International Journal of Structural Integrity 13, Nr. 4 (28.03.2022): 632–48. http://dx.doi.org/10.1108/ijsi-10-2019-0103.
Der volle Inhalt der QuelleLi, Shibin. „Fatigue of Reinforcing Steel Bars Subjected to Natural Corrosion“. Open Civil Engineering Journal 5, Nr. 1 (29.04.2011): 69–74. http://dx.doi.org/10.2174/1874149501105010069.
Der volle Inhalt der QuelleZhuang, Chenxu, Jinquan Zhang und Ruinian Jiang. „Fatigue Flexural Performance of Short-Span Reinforced Concrete T-Beams Considering Overloading Effect“. Baltic Journal of Road and Bridge Engineering 15, Nr. 2 (25.06.2020): 89–110. http://dx.doi.org/10.7250/bjrbe.2020-15.474.
Der volle Inhalt der QuelleIslam, M. A. „Essential Mechanical Properties of Structural Steels for Steel Reinforced Buildings in the Earthquake Sensitive Areas“. Journal of Scientific Research 4, Nr. 1 (23.12.2011): 51. http://dx.doi.org/10.3329/jsr.v4i1.7069.
Der volle Inhalt der QuelleDissertationen zum Thema "Reinforcing bars Fatigue"
Zheng, Hang. „Tempcore reinforcing steel : microstructure and mechanical properties“. Phd thesis, Department of Civil Engineering, 1998. http://hdl.handle.net/2123/8671.
Der volle Inhalt der QuelleGravina, Rebecca Jane. „Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phg777.pdf.
Der volle Inhalt der QuelleGravina, Rebecca Jane. „Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement / by Rebecca Jane Gravina“. Thesis, 2002. http://hdl.handle.net/2440/21791.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 192-199)
xxvii, 223 leaves : ill. ; 30 cm.
Investigates the overload behaviour and modes of collapse of reinforced concrete flexural members containing 500MPa grade reinforcing steel and evaluates the adequacy of current ductility requirements for design according to AS 3600 to ensure strength and safety.
Thesis (Ph.D.)--University of Adelaide, Dept. of Civil and Environmental Engineering, 2002
Buchteile zum Thema "Reinforcing bars Fatigue"
Abatta-Jácome, Lenin, Carlos Naranjo-Guatemala, Daniel Naranjo-Torres und Edison E. Haro. „Experimental Study of Low Cycle Fatigue in Welded Reinforcing Steel Bars ASTM A706“. In Communications in Computer and Information Science, 3–15. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-24971-6_1.
Der volle Inhalt der QuelleReal, Enrique, Cristina Rodríguez, A. F. Canteli und F. J. Belzunce. „Influence of the Shot Peening Process on the Fatigue Behaviour of Duplex Stainless Steel Reinforcing Bars“. In THERMEC 2006, 4981–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4981.
Der volle Inhalt der Quelle„Low cycle fatigue properties of anti-seismic steel HRB400E reinforcing steel bars“. In Green Building, Materials and Civil Engineering, 337–40. CRC Press, 2014. http://dx.doi.org/10.1201/b17568-67.
Der volle Inhalt der QuelleIshikawa, Y., M. Aoyama, Y. Adachi und M. Nagai. „Damage assessment of reinforced concrete decks due to chloride-induced corrosion of reinforcing bars and fatigue“. In Bridge Maintenance, Safety, Management, Resilience and Sustainability, 1659–66. CRC Press, 2012. http://dx.doi.org/10.1201/b12352-241.
Der volle Inhalt der QuelleM. Kashani, Mohammad, Adam J. Crewe und Nicholas A. Alexander. „Damage propagation in corroded reinforcing bars with the effect of inelastic buckling under low-cycle fatigue loading“. In Life-Cycle of Engineering Systems, 1996–2002. CRC Press, 2016. http://dx.doi.org/10.1201/9781315375175-262.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Reinforcing bars Fatigue"
Braconi, A., F. Braga, S. Caprili, R. Gigliotti und W. Salvatore. „INFLUENCE OF LOW-CYCLE FATIGUE AND CORROSION PHENOMENA ON THE DUCTILE BEHAVIOUR OF STEEL REINFORCING BARS“. In 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2014. http://dx.doi.org/10.7712/120113.4787.c1537.
Der volle Inhalt der QuelleLunabba, Torsten, Milla Ranta, Kimmo Julku, Heikki Lilja und Timo Tirkkonen. „Evaluating the Residual Lifetime of Road Bridges Through Simulation“. In IABSE Conference, Copenhagen 2018: Engineering the Past, to Meet the Needs of the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/copenhagen.2018.008.
Der volle Inhalt der QuelleJansto, Steven G. „New Generation Structural Steel Plate Metallurgy for Meeting Offshore and Arctic Application Challenges“. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77723.
Der volle Inhalt der QuelleYoneda, Taiju, Jie Fang, Hideyuki Otani, Satoshi Tsuchiya, Satoru Oishi und Tetsuya Ishida. „Development of a 3D Finite-Element Modelling Generation System Based on Data Processing Platform and Fatigue Analysis of Full-Scale Reinforced-Concrete Bridge“. In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0415.
Der volle Inhalt der QuelleChen, Jie, und Yongming Liu. „Bayesian Information Fusion of Multmodality Nondestructive Measurements for Probabilistic Mechanical Property Estimation“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23411.
Der volle Inhalt der Quelle