Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Reinforced concrete construction Ductility“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reinforced concrete construction Ductility" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Reinforced concrete construction Ductility"
Mo, Y. L., und S. F. Perng. „Behavior of Framed Shearwalls Made of Corrugated Steel under Lateral Load Reversals“. Advances in Structural Engineering 3, Nr. 3 (Juli 2000): 255–62. http://dx.doi.org/10.1260/1369433001502184.
Der volle Inhalt der QuelleHosen, Md Akter, Mahaad Issa Shammas, Sukanta Kumer Shill, Safat Al-Deen, Mohd Zamin Jumaat und Huzaifa Hashim. „Ductility Enhancement of Sustainable Fibrous-Reinforced High-Strength Lightweight Concrete“. Polymers 14, Nr. 4 (14.02.2022): 727. http://dx.doi.org/10.3390/polym14040727.
Der volle Inhalt der QuelleBai, Z. Z., und F. T. K. Au. „Ductility of symmetrically reinforced concrete columns“. Magazine of Concrete Research 61, Nr. 5 (Juni 2009): 345–57. http://dx.doi.org/10.1680/macr.2008.00149.
Der volle Inhalt der QuelleDu, Chuang, Xiao Ming Yang und Ning Li Li. „Performance Analysis of Concrete-Filled Steel Tube Column and Reinforced Concrete Column under Axial Compression“. Advanced Materials Research 446-449 (Januar 2012): 82–85. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.82.
Der volle Inhalt der QuelleXiang, Ping, ZH Deng, YS Su, HP Wang und YF Wan. „Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading“. Advances in Structural Engineering 20, Nr. 3 (29.07.2016): 446–60. http://dx.doi.org/10.1177/1369433216653841.
Der volle Inhalt der QuelleRenić, Tvrtko, und Tomislav Kišiček. „Ductility of Concrete Beams Reinforced with FRP Rebars“. Buildings 11, Nr. 9 (21.09.2021): 424. http://dx.doi.org/10.3390/buildings11090424.
Der volle Inhalt der QuelleKuang, J. S., und A. I. Atanda. „Enhancing ductility of reinforced concrete frame buildings“. Proceedings of the Institution of Civil Engineers - Structures and Buildings 158, Nr. 4 (August 2005): 253–65. http://dx.doi.org/10.1680/stbu.2005.158.4.253.
Der volle Inhalt der QuelleAlzeebaree, Radhwan, Abdulkadir Çevik, Alaa Mohammedameen, Anıl Niş und Mehmet Eren Gülşan. „Mechanical performance of FRP-confined geopolymer concrete under seawater attack“. Advances in Structural Engineering 23, Nr. 6 (14.11.2019): 1055–73. http://dx.doi.org/10.1177/1369433219886964.
Der volle Inhalt der QuelleYuan, Huang, Huan-Peng Hong, Huang Deng und Yu Bai. „Displacement ductility of staged construction-steel tube-reinforced concrete columns“. Construction and Building Materials 188 (November 2018): 1137–48. http://dx.doi.org/10.1016/j.conbuildmat.2018.08.141.
Der volle Inhalt der QuelleKwan, A. K. H., J. C. M. Ho und H. J. Pam. „Flexural strength and ductility of reinforced concrete beams“. Proceedings of the Institution of Civil Engineers - Structures and Buildings 152, Nr. 4 (November 2002): 361–69. http://dx.doi.org/10.1680/stbu.2002.152.4.361.
Der volle Inhalt der QuelleDissertationen zum Thema "Reinforced concrete construction Ductility"
Gravina, Rebecca Jane. „Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phg777.pdf.
Der volle Inhalt der QuelleZaina, Mazen Said Civil & Environmental Engineering Faculty of Engineering UNSW. „Strength and ductility of fibre reinforced high strength concrete columns“. Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 2005. http://handle.unsw.edu.au/1959.4/22054.
Der volle Inhalt der QuelleChen, Mantai, und 陈满泰. „Combined effects of strain gradient and concrete strength on flexural strength and ductility design of RC beams and columns“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206429.
Der volle Inhalt der Quellepublished_or_final_version
Civil Engineering
Master
Master of Philosophy
Chau, Siu-lee. „Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams“. Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31997661.
Der volle Inhalt der QuelleChau, Siu-lee, und 周小梨. „Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B31997661.
Der volle Inhalt der QuelleBroms, Carl Erik. „Concrete flat slabs and footings : Design method for punching and detailing for ductility“. Doctoral thesis, KTH, Brobyggnad inkl stålbyggnad, 2005. http://innopac.lib.kth.se/search/.
Der volle Inhalt der Quelle"ISRN KTH/BKN/B-80-SE." "Dept. of Civil and Architectural Engineering, Division of Structural Design and Bridges, Royal Institute of Technology, Stockholm. " Includes bibliographical references. Available from the Royal Institute of Technology (Sweden) Library as a .pdf document http://www.lib.kth.se/main/eng/
Yuksel, Bahadir S. „Experimental Investigation Of The Seismic Behavior Of Panel Buildings“. Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/1070309/index.pdf.
Der volle Inhalt der Quellezce provinces in Turkey with magnitudes (Mw) 7.4 and 7.1, respectively. These catastrophes caused substantial structural damage, casualties and loss of lives. In the aftermath of these destructive earthquakes, neither demolished nor damaged shear-wall dominant buildings constructed by tunnel form techniques were reported. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code and the Turkish Seismic Code present limited information for their design criteria. This study presents experimental investigation of the panel unit having H-geometry. To investigate the seismic behavior of panel buildings, two prototype test specimens which have H wall design were tested at the Structural Mechanics Laboratory at METU. The experimental work involves the testing of two four-story, 1/5-scale reinforced concrete panel form building test specimens under lateral reversed loading, simulating the seismic forces and free vibration tests. Free vibration tests before and after cracking were done to assess the differences between the dynamic properties of uncracked and cracked test specimens. A moment-curvature program named Waller2002 for shear walls is developed to include the effects of steel strain hardening, confinement of concrete and tension strength of concrete. The moment-curvature relationships of panel form test specimens showed that walls with very low longitudinal steel ratios exhibit a brittle flexural failure with very little energy absorption. Shear walls of panel form test specimens have a reinforcement ratio of 0.0015 in the longitudinal and vertical directions. Under gradually increasing reversed lateral loading, the test specimens reached ultimate strength, as soon as the concrete cracked, followed by yielding and then rupturing of the longitudinal steel. The displacement ductility of the panel form test specimens was found to be very low. Thus, the occurrence of rupture of the longitudinal steel, as also observed in analytical studies, has been experimentally verified. Strength, stiffness, energy dissipation and story drifts of the test specimens were examined by evaluating the test results.
Soesianawati, M. T. „Limited ductility design of reinforced concrete columns“. Thesis, University of Canterbury. Department of Civil Engineering, 1986. http://hdl.handle.net/10092/3643.
Der volle Inhalt der QuelleKim, SangHun Aboutaha Riyad S. „Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete“. Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.
Der volle Inhalt der QuelleLau, Tak-bun Denvid. „Flexural ductility improvement of FRP-reinforced concrete members“. Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38907756.
Der volle Inhalt der QuelleBücher zum Thema "Reinforced concrete construction Ductility"
Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.
Den vollen Inhalt der Quelle findenDhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.
Den vollen Inhalt der Quelle findenF, Limbrunner George, Hrsg. Reinforced concrete design. 3. Aufl. Englewood Cliffs, N.J: Prentice Hall, 1992.
Den vollen Inhalt der Quelle findenF, Limbrunner George, Hrsg. Reinforced concrete design. 4. Aufl. Upper Saddle River, N.J: Prentice Hall, 1998.
Den vollen Inhalt der Quelle findenF, Limbrunner George, Hrsg. Reinforced concrete design. 2. Aufl. Englewood Cliffs, N.J: Prentice-Hall, 1986.
Den vollen Inhalt der Quelle findenWang, Chu-Kia. Reinforced concrete design. 4. Aufl. New York: Harper & Row, 1985.
Den vollen Inhalt der Quelle findenWang, Chu-Kia. Reinforced concrete design. 5. Aufl. New York, NY: HarperCollins, 1992.
Den vollen Inhalt der Quelle findenWang, Chu-Kia. Reinforced concrete design. 6. Aufl. Menlo Park, Calif: Addison-Wesley, 1998.
Den vollen Inhalt der Quelle findenO, Aghayere Abi, Hrsg. Reinforced concrete design. 7. Aufl. Upper Saddle River, NJ: Prentice Hall, 2010.
Den vollen Inhalt der Quelle findenWang, Chu-Kia. Reinforced concrete design. 7. Aufl. Hoboken, NJ: John Wiley & Sons, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Reinforced concrete construction Ductility"
Dancygier, Avraham N., und Erez Berkover. „Effect of Steel Fibers on the Flexural Ductility of Lightly Reinforced Concrete Beams“. In Innovative Materials and Techniques in Concrete Construction, 197–207. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1997-2_12.
Der volle Inhalt der QuelleMosley, W. H., J. H. Bungey und R. Hulse. „Composite construction“. In Reinforced Concrete Design, 350–73. London: Macmillan Education UK, 1999. http://dx.doi.org/10.1007/978-1-349-14911-7_13.
Der volle Inhalt der QuelleVan Gysel, Ann, Tom Molkens und Inge Deygers. „Ductility of Heavily Reinforced Concrete Beams“. In High Tech Concrete: Where Technology and Engineering Meet, 553–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_66.
Der volle Inhalt der QuelleMitchell, Charles F., und George A. Mitchell. „Reinforced Concrete or Ferro-Concrete.“ In Building Construction and Drawing 1906, 502–15. 4. Aufl. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003261674-11.
Der volle Inhalt der QuelleDickey, Walter L. „Reinforced Concrete Masonry Construction“. In Handbook of Concrete Engineering, 632–62. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0857-8_17.
Der volle Inhalt der QuelleGarrido Vazquez, E., A. Naked Haddad, E. Linhares Qualharini, L. Amaral Alves und I. Amorim Féo. „Pathologies in Reinforced Concrete Structures“. In Sustainable Construction, 213–28. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0651-7_10.
Der volle Inhalt der QuelleKollerathu, Jacob Alex. „Curvature Ductility of Reinforced Masonry Walls and Reinforced Concrete Walls“. In Lecture Notes in Civil Engineering, 9–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_2.
Der volle Inhalt der QuelleBussell, Michael. „Conservation of Concrete and Reinforced Concrete“. In Structures & Construction in Historic Building Conservation, 192–210. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470691816.ch11.
Der volle Inhalt der QuelleSetareh, Mehdi, und Robert Darvas. „Metric System in Reinforced Concrete Design and Construction“. In Concrete Structures, 591–605. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24115-9_10.
Der volle Inhalt der QuelleVera-Agullo, J., V. Chozas-Ligero, D. Portillo-Rico, M. J. García-Casas, A. Gutiérrez-Martínez, J. M. Mieres-Royo und J. Grávalos-Moreno. „Mortar and Concrete Reinforced with Nanomaterials“. In Nanotechnology in Construction 3, 383–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00980-8_52.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Reinforced concrete construction Ductility"
„"Ultra-High Performance Concrete With Ductility: Design, Prototyping And Manufacturing Of Panels And Boxes"“. In SP-224: Thin Reinforced Cement-Based Products and Construction Systems. American Concrete Institute, 2004. http://dx.doi.org/10.14359/13409.
Der volle Inhalt der QuelleTabsh, Sami W. „Effect of Construction Minor Defects on the Ductility of Reinforced Concrete Drilled Shafts“. In The 4th World Congress on Civil, Structural, and Environmental Engineering. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icsect19.125.
Der volle Inhalt der QuelleKatayama, Norinobu, Kazuhiko Fujisaki, Takehisa Ueno, Ryutaro Onishi und Isamu Yoshitake. „Laboratory And Field Tests On A Prefabricated Steel-Bar Mesh-Panel System For Continuously-Reinforced-Concrete Pavement (CRCP)“. In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/fbj2y5fe.
Der volle Inhalt der QuelleGüler, Soner, Fuat Korkut, Namik Yaltay und Demet Yavuz. „Axial behaviour of concrete filled steel tube stub columns: a review“. In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7602.
Der volle Inhalt der QuelleZhang, Fei, und Jianxun Ma. „Experimental Study on Hybrid Masonry Structure with RC Frame under Lateral Reversed Cyclic Loading“. In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0142.
Der volle Inhalt der QuelleHan, Lin-Hai, Dan-Yang Ma und Kan Zhou. „Concrete-encased CFST structures: behaviour and application“. In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7109.
Der volle Inhalt der QuelleKumar, Aravind S., Bharati Raj J und Keerthy M. Simon. „Shear Strength of Steel Fiber Reinforced Reactive Powder Concrete & Geopolymer Concrete – A Comparison“. In International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.43.
Der volle Inhalt der QuelleThapa, Aashish, Mustafa Mashal und Mahesh Acharya. „Large-Scale Flexural Testing of Concrete Beams Reinforced with Conventional Steel and Titanium Alloy Bars“. In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0272.
Der volle Inhalt der QuelleElesawy, Alaa, und Mustafa Batikha. „Structural behaviour of steel plate infilled outrigger wall system“. In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.1265.
Der volle Inhalt der QuelleLandler, Josef, und Oliver Fischer. „Punching Shear Capacity of Steel Fiber Reinforced Concrete Slab- Column Connections“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0467.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Reinforced concrete construction Ductility"
Duthinh, Dat, und Monica Starnes. Strength and ductility of concrete beams reinforced with carbon FRP and steel. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6830.
Der volle Inhalt der QuelleHuang, Cihang, Yen-Fang Su und Na Lu. Self-Healing Cementitious Composites (SHCC) with Ultrahigh Ductility for Pavement and Bridge Construction. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317403.
Der volle Inhalt der QuelleRoesler, Jeffery, Sachindra Dahal, Dan Zollinger und W. Jason Weiss. Summary Findings of Re-engineered Continuously Reinforced Concrete Pavement: Volume 1. Illinois Center for Transportation, Mai 2021. http://dx.doi.org/10.36501/0197-9191/21-011.
Der volle Inhalt der QuelleRamey, M. R., und G. Daie-e. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel. Office of Scientific and Technical Information (OSTI), Juli 1988. http://dx.doi.org/10.2172/6382922.
Der volle Inhalt der QuelleRagalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar und Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.
Der volle Inhalt der QuelleNema, Arpit, und Jose Restrep. Low Seismic Damage Columns for Accelerated Bridge Construction. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, Dezember 2020. http://dx.doi.org/10.55461/zisp3722.
Der volle Inhalt der QuelleBell, Matthew, Rob Ament, Damon Fick und Marcel Huijser. Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians. Nevada Department of Transportation, September 2022. http://dx.doi.org/10.15788/ndot2022.09.
Der volle Inhalt der QuelleScheerer, Silke, und Manfred Curbach, Hrsg. Leicht Bauen mit Beton – Grundlagen für das Bauen der Zukunft mit bionischen und mathematischen Entwurfsprinzipien (Abschlussbericht). Technische Universität Dresden, Institut für Massivbau, 2022. http://dx.doi.org/10.25368/2022.162.
Der volle Inhalt der QuelleDiggs-McGee, Brandy, Eric Kreiger, Megan Kreiger und Michael Case. Print time vs. elapsed time : a temporal analysis of a continuous printing operation. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41422.
Der volle Inhalt der QuelleTHE STRUCTURAL AND CONSTRUCTION PERFORMANCES OF A LARGE-SPAN HALF STEEL-PLATE-REINFORCED CONCRETE HOLLOW ROOF. The Hong Kong Institute of Steel Construction, März 2019. http://dx.doi.org/10.18057/ijasc.2019.15.1.3.
Der volle Inhalt der Quelle