Zeitschriftenartikel zum Thema „Regulation of food intake“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Regulation of food intake.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Regulation of food intake" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Danker-Hopfe, Heidi, Kirsten Roczen und Ute Löwenstein-Wagner. „Regulation of food intake during the menstrual cycle“. Anthropologischer Anzeiger 53, Nr. 3 (28.06.1995): 231–38. http://dx.doi.org/10.1127/anthranz/53/1995/231.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Klein, Samuel. „Regulation of Food Intake“. Journal of Parenteral and Enteral Nutrition 32, Nr. 5 (September 2008): 563. http://dx.doi.org/10.1177/0148607108321710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

FURUSE, Mitsuhiro. „Food Intake Regulation in Poultry.“ Japanese poultry science 33, Nr. 5 (1996): 275–85. http://dx.doi.org/10.2141/jpsa.33.275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Seeley, RJ, und MW Schwartz. „Neuroendocrine regulation of food intake“. Acta Paediatrica 88, s428 (Februar 1999): 58–61. http://dx.doi.org/10.1111/j.1651-2227.1999.tb14352.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cummings, David E., und Joost Overduin. „Gastrointestinal regulation of food intake“. Journal of Clinical Investigation 117, Nr. 1 (02.01.2007): 13–23. http://dx.doi.org/10.1172/jci30227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chaptini, Louis, und Steven Peikin. „Neuroendocrine regulation of food intake“. Current Opinion in Gastroenterology 24, Nr. 2 (März 2008): 223–29. http://dx.doi.org/10.1097/mog.0b013e3282f3f4d8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

York, David A. „Metabolic Regulation of Food Intake“. Nutrition Reviews 48, Nr. 2 (27.04.2009): 64–70. http://dx.doi.org/10.1111/j.1753-4887.1990.tb02907.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Karhunen, Leila, und Karl-Heinz Herzig. „Neuroendocrinological regulation of food intake“. Regulatory Peptides 149, Nr. 1-3 (August 2008): 1–2. http://dx.doi.org/10.1016/j.regpep.2008.03.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

BIRCH, LEANN L., und JENNIFER O. FISHER. „Food Intake Regulation in Children.“ Annals of the New York Academy of Sciences 819, Nr. 1 Nutritional I (Mai 1997): 194–220. http://dx.doi.org/10.1111/j.1749-6632.1997.tb51809.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cupples, W. A. „Physiological regulation of food intake“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 288, Nr. 6 (Juni 2005): R1438—R1443. http://dx.doi.org/10.1152/ajpregu.00195.2005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Stanley, Sarah, Katie Wynne, Barbara McGowan und Stephen Bloom. „Hormonal Regulation of Food Intake“. Physiological Reviews 85, Nr. 4 (Oktober 2005): 1131–58. http://dx.doi.org/10.1152/physrev.00015.2004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.
12

Hagan, Scott, und Kevin D. Niswender. „Neuroendocrine regulation of food intake“. Pediatric Blood & Cancer 58, Nr. 1 (23.09.2011): 149–53. http://dx.doi.org/10.1002/pbc.23376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Denbow, D. Michael. „Food intake regulation in birds“. Journal of Experimental Zoology 283, Nr. 4-5 (01.03.1999): 333–38. http://dx.doi.org/10.1002/(sici)1097-010x(19990301/01)283:4/5<333::aid-jez3>3.0.co;2-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Plata-Salaman, C. R. „Interferons and central regulation of feeding“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 263, Nr. 6 (01.12.1992): R1222—R1227. http://dx.doi.org/10.1152/ajpregu.1992.263.6.r1222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Interferons (IFNs) are immunomodulators with neuromodulatory activities. To study the effects of IFNs on the central regulation of feeding, rats were subjected to various applications. The results show the following. 1) Intracerebroventricular microinfusion of rat IFN (15-225 IU/rat) decreased short-term (2-h) food intake in rats. Computerized analysis of behavioral patterns demonstrated a reduction of meal size and meal duration, whereas meal frequency slightly increased. Nighttime and total daily food intakes were not significantly affected. 2) Short-term food intake suppression by intracerebroventricular rat IFN was accompanied by a small increase in cerebrospinal fluid and rectal temperatures. 3) Intracerebroventricular microinfusion of heat-treated rat IFN or of recombinant human interferon-alpha (rhIFN-alpha) did not affect food intake. Only one dose of rhIFN-gamma (400 ng/rat) decreased 2-h food intake. These results are consistent with the species specificity to the effects of IFNs. 4) Peripheral administration of rat IFN in doses equivalent to those administered centrally had no effect on food intake. The results suggest that IFN acts directly in the central nervous system to decrease short-term feeding.
15

Boon, Brigitte, Wolfgang Stroebe, Henk Schut und Anita Jansen. „Food for thought: Cognitive regulation of food intake“. British Journal of Health Psychology 3, Nr. 1 (Februar 1998): 27–40. http://dx.doi.org/10.1111/j.2044-8287.1998.tb00553.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Cupples, W. A. „Integrating the regulation of food intake“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, Nr. 2 (01.08.2002): R356—R357. http://dx.doi.org/10.1152/ajpregu.00269.2002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Flatt, J. P. „Carbohydrate balance and food intake regulation“. American Journal of Clinical Nutrition 62, Nr. 1 (01.07.1995): 155–57. http://dx.doi.org/10.1093/ajcn/62.1.155.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Minokoshi, Yasuhiko. „Food intake regulation by hypothalamic AMPK“. Folia Pharmacologica Japonica 137, Nr. 4 (2011): 172–76. http://dx.doi.org/10.1254/fpj.137.172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Ohinata, Kousaku, und Masaaki Yoshikawa. „Central prostaglandins in food intake regulation“. Nutrition 24, Nr. 9 (September 2008): 798–801. http://dx.doi.org/10.1016/j.nut.2008.06.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Lo Verme, J., S. Gaetani, J. Fu, F. Oveisi, K. Burton und D. Piomelli. „Regulation of food intake by oleoylethanolamide“. Cellular and Molecular Life Sciences 62, Nr. 6 (März 2005): 708–16. http://dx.doi.org/10.1007/s00018-004-4494-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Challet, Etienne. „The circadian regulation of food intake“. Nature Reviews Endocrinology 15, Nr. 7 (09.05.2019): 393–405. http://dx.doi.org/10.1038/s41574-019-0210-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Forestell, C. A., E. Ege und I. R. Sesay. „Solid food intake regulation in infants“. Appetite 57 (Juli 2011): S16. http://dx.doi.org/10.1016/j.appet.2011.05.170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ingvartsen, K. L., N. C. Friggens und P. Faverdin. „Food intake regulation in late pregnancy and early lactation“. BSAP Occasional Publication 24 (1999): 37–54. http://dx.doi.org/10.1017/s1463981500043065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThe dip in food intake, which starts in late pregnancy and continues into early lactation, has traditionally been interpreted as a depression in intake due to physical constraints. However, the rôle of physical constraints on intake has been overemphasized, particularly in early lactation. There is mounting evidence that the presence and mobilization of body reserves in early lactation play an important rôle in regulating intake at this time.Conceptually, the dip in intake in early lactation observed when cows have access to non-limiting foods can be accounted for by assuming that the cow has a desired level of body reserves. When the cow is not compromised, the changes with time in body reserves and the dip in intake represent the normal case and provide the basis against which to assess true depressions in intake which may occur when the cow is compromised by limiting nutrition or environment.The regulation of body reserves and intake in the periparturient cow is orchestrated through nervous and hormonal signals. Likely factors that are involved in intake regulation are reproductive hormones, neuropeptides, adrenergic signals, insulin and insulin resistance and leptin. Furthermore, oxidation of NEFA in the liver may result in feedback signals that reduce intake. The relative importance of these is discussed. A better understanding of the physiological signals involved in intake regulation and their interrelations with body weight regulation may provide important indicators of the degree of compromise that periparturient cows may experience.
24

Mikulášková, B., L. Maletínská, J. Zicha und J. Kuneš. „The role of food intake regulating peptides in cardiovascular regulation“. Molecular and Cellular Endocrinology 436 (November 2016): 78–92. http://dx.doi.org/10.1016/j.mce.2016.07.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

WOODS, STEPHEN C., und JAMES GIBBS. „The Regulation of Food Intake by Peptides“. Annals of the New York Academy of Sciences 575, Nr. 1 The Psychobio (Dezember 1989): 236–43. http://dx.doi.org/10.1111/j.1749-6632.1989.tb53246.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Jain, Swati, und Som Nath Singh. „Regulation of Food Intake : A Complex Process“. Defence Life Science Journal 3, Nr. 2 (23.03.2018): 182. http://dx.doi.org/10.14429/dlsj.3.12401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
<p>Researchers have created a wealth of knowledge about the mechanisms that regulate food intake, appetite and therefore weight control. The control of appetite is a complex mechanism and involves the coordination of inputs from both physiological and environmental sources. Early theoretical approaches were based on the idea that the control mechanism was dedicated exclusively to signals from glucose metabolism, amino acids or proteins, or adipose tissue. However, a complex system of biologic and environmental factors regulates our appetite. The brain integrates chemical and nervous signals to control hunger and satiety. These controls include sensory and gastrointestinal signals, neurotransmitters and neuropeptides. This review paper summarizes the existing plethora of the highly convoluted process of appetite regulation and food intake.</p>
27

Nederkoorn, Chantal, und Anita Jansen. „Cue reactivity and regulation of food intake“. Eating Behaviors 3, Nr. 1 (März 2002): 61–72. http://dx.doi.org/10.1016/s1471-0153(01)00045-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kitamura, Tadahiro, und Tsutomu Sasaki. „Hypothalamic Sirt1 and regulation of food intake“. Diabetology International 3, Nr. 3 (22.08.2012): 109–12. http://dx.doi.org/10.1007/s13340-012-0088-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dhillo, W. S., und S. R. Bloom. „Gastrointestinal Hormones and Regulation of Food Intake“. Hormone and Metabolic Research 36, Nr. 11/12 (November 2004): 846–51. http://dx.doi.org/10.1055/s-2004-826174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Denbow, D. Michael. „Peripheral Regulation of Food Intake in Poultry“. Journal of Nutrition 124, suppl_8 (01.08.1994): 1349S—1354S. http://dx.doi.org/10.1093/jn/124.suppl_8.1349s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hirscbberg, Angelica Lindén. „Hormonal regulation of appetite and food intake“. Annals of Medicine 30, Nr. 1 (Januar 1998): 7–20. http://dx.doi.org/10.3109/07853899808999380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Baynes, Kevin CR, Waljit S. Dhillo und Stephen R. Bloom. „Regulation of food intake by gastrointestinal hormones“. Current Opinion in Gastroenterology 22, Nr. 6 (November 2006): 626–31. http://dx.doi.org/10.1097/01.mog.0000245537.43142.63.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Melanson, Kathleen J. „Food Intake Regulation in Body Weight Management“. Nutrition Today 39, Nr. 5 (September 2004): 203–13. http://dx.doi.org/10.1097/00017285-200409000-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Schwartz, Michael W. „Central Nervous System Regulation of Food Intake“. Obesity 14, Nr. 2S (Februar 2006): 1S—8S. http://dx.doi.org/10.1038/oby.2006.275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Rampone, A. J., und P. J. Reynolds. „Food intake regulation by diet-induced thermogenesis“. Medical Hypotheses 34, Nr. 1 (Januar 1991): 7–12. http://dx.doi.org/10.1016/0306-9877(91)90057-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ukkola, O. „Peripheral regulation of food intake: New insights“. Journal of Endocrinological Investigation 27, Nr. 1 (Januar 2004): 96–98. http://dx.doi.org/10.1007/bf03350918.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Mayer, Jean. „GLUCOSTATIC MECHANISM OF REGULATION OF FOOD INTAKE*“. Obesity Research 4, Nr. 5 (September 1996): 493–96. http://dx.doi.org/10.1002/j.1550-8528.1996.tb00260.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Deutsch, J. A., und Sonia Jang Ahn. „The splanchnic nerve and food intake regulation“. Behavioral and Neural Biology 45, Nr. 1 (Januar 1986): 43–47. http://dx.doi.org/10.1016/s0163-1047(86)80004-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Tremblay, Angelo, Marie-Pascale Gagné, Louis Pérusse, Catherine Fortier, Véronique Provencher, Ronan Corcuff, Sonia Pomerleau, Nicoletta Foti und Vicky Drapeau. „Sodium and Human Health: What Can Be Done to Improve Sodium Balance beyond Food Processing?“ Nutrients 16, Nr. 8 (18.04.2024): 1199. http://dx.doi.org/10.3390/nu16081199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Sodium plays a key role in the regulation of water balance and is also important in food formulation due to its contribution to the taste and use in the preservation of many foods. Excessive intake of any essential nutrient is problematic and this seems to be particularly the case for sodium since a high intake makes it the nutrient most strongly associated with mortality. Sodium intake has been the object of recommendations by public health agencies such as the WHO and this has resulted in efforts by the food industry to reduce the sodium content of packaged foods, although there is still room for improvement. The recent literature also emphasizes the need for other strategies, e.g., regulations and education, to promote adequate sodium intake. In the present paper, we also describe the potential benefits of a global healthy lifestyle that considers healthy eating but also physical activity habits that improve body functionality and may help to attenuate the detrimental effects of high sodium intake on body composition and cardiometabolic health. In conclusion, a reduction in sodium intake, an improvement in body functioning, and educational interventions promoting healthy eating behaviours seem to be essential for the optimal regulation of sodium balance.
40

Flood, J. F., S. A. Farr, H. J. Perry III, F. E. Kaiser, P. M. K. Morley und J. E. Morley. „Effects of amylin on appetite regulation and memory“. Canadian Journal of Physiology and Pharmacology 73, Nr. 7 (01.07.1995): 1042–46. http://dx.doi.org/10.1139/y95-147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Amylin has been demonstrated to decrease food intake in mice and rats. Amylin is effective when delivered both peripherally and directly into the central nervous system. Amylin's effect on food intake is not aversive. Amylin may produce its effect on food intake by modulating nitric oxide synthesis. Calcitonin gene related peptide also decreases food intake after peripheral and central administration. In addition, amylin has been demonstrated to modulate memory at both peripheral and central sites.Key words: appetite, retention, satiety, memory, amylin.
41

Cupples, W. A. „Regulating food intake“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 284, Nr. 3 (01.03.2003): R652—R654. http://dx.doi.org/10.1152/ajpregu.00650.2002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

French, Stephen, und Kate Castiglione. „Recent advances in the physiology of eating“. Proceedings of the Nutrition Society 61, Nr. 4 (November 2002): 489–96. http://dx.doi.org/10.1079/pns2002190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Since the discovery of the protein product of theob/obgene, leptin, knowledge of the neurochemical pathways involved in the regulation of feeding has increased enormously. Our understanding of the mechanisms regulating food intake in man has also progressed greatly over a similar time span. Previous research into the regulation of food intake has largely proceeded through a reductionist approach, defining ever-smaller components of these mechanisms. This research strategy has been very productive and instructive, and has yielded a great deal of information on the specific putative components linking energy status and food intake. However, to fully understand the regulation of feeding it is important that these components are systematically reconstructed to investigate relevant interactions. In the present review recent data relating to interactions between systems proposed to be involved in feeding regulation will be highlighted. The review will be directed predominantly (but not exclusively) towards the regulation of human feeding.
43

Crespi, Erica J., und Margaret K. Unkefer. „Development of food intake controls: Neuroendocrine and environmental regulation of food intake during early life“. Hormones and Behavior 66, Nr. 1 (Juni 2014): 74–85. http://dx.doi.org/10.1016/j.yhbeh.2014.04.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Lim, Jia Jiet, und Sally D. Poppitt. „How Satiating Are the ‘Satiety’ Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake“. Nutrients 11, Nr. 7 (04.07.2019): 1517. http://dx.doi.org/10.3390/nu11071517.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.
45

OOMURA, Yutaka. „Endogenous organic chemical substances and food intake regulation.“ Journal of Synthetic Organic Chemistry, Japan 44, Nr. 2 (1986): 127–36. http://dx.doi.org/10.5059/yukigoseikyokaishi.44.127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Wójcik-Gładysz, A., und M. Szlis. „Hypothalamo-gastrointestinal axis – role in food intake regulation“. Journal of Animal and Feed Sciences 25, Nr. 2 (19.05.2016): 97–108. http://dx.doi.org/10.22358/jafs/65569/2016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

ROSSO, PEDRO. „Regulation of Food Intake During Pregnancy and Lactation“. Annals of the New York Academy of Sciences 499, Nr. 1 (17.12.2006): 191–96. http://dx.doi.org/10.1111/j.1749-6632.1987.tb36210.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Woods, Stephen C., Michael W. Schwartz, Denis G. Baskin und Randy J. Seeley. „Food Intake and the Regulation of Body Weight“. Annual Review of Psychology 51, Nr. 1 (Februar 2000): 255–77. http://dx.doi.org/10.1146/annurev.psych.51.1.255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Fredrickson, P., M. Boules und E. Richelson. „Neurotensin agonists in the regulation of food intake“. International Journal of Obesity 38, Nr. 3 (17.07.2013): 474. http://dx.doi.org/10.1038/ijo.2013.129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Koch, Marco, Joel K. Elmquist, Yury M. Morozov, Pasko Rakic, Ingo Bechmann, Michael A. Cowley, Marcelo O. Dietrich, Sabrina Diano und Tamas L. Horvath. „Novel insights into central regulation of food intake“. Neuropeptides 55 (Februar 2016): 30. http://dx.doi.org/10.1016/j.npep.2015.11.086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie