Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Regulation of Cdc42“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Regulation of Cdc42" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Regulation of Cdc42"
Bassilana, Martine, Julie Hopkins und Robert A. Arkowitz. „Regulation of the Cdc42/Cdc24 GTPase Module during Candida albicans Hyphal Growth“. Eukaryotic Cell 4, Nr. 3 (März 2005): 588–603. http://dx.doi.org/10.1128/ec.4.3.588-603.2005.
Der volle Inhalt der QuellevandenBerg, Alysia L., Ashraf S. Ibrahim, John E. Edwards, Kurt A. Toenjes und Douglas I. Johnson. „Cdc42p GTPase Regulates the Budded-to-Hyphal-Form Transition and Expression of Hypha-Specific Transcripts in Candida albicans“. Eukaryotic Cell 3, Nr. 3 (Juni 2004): 724–34. http://dx.doi.org/10.1128/ec.3.3.724-734.2004.
Der volle Inhalt der QuelleHöfken, Thomas, und Elmar Schiebel. „Novel regulation of mitotic exit by the Cdc42 effectors Gic1 and Gic2“. Journal of Cell Biology 164, Nr. 2 (19.01.2004): 219–31. http://dx.doi.org/10.1083/jcb.200309080.
Der volle Inhalt der QuelleZigmond, Sally H., Michael Joyce, Jane Borleis, Gary M. Bokoch und Peter N. Devreotes. „Regulation of Actin Polymerization in Cell-free Systems by GTPγS and Cdc42“. Journal of Cell Biology 138, Nr. 2 (28.07.1997): 363–74. http://dx.doi.org/10.1083/jcb.138.2.363.
Der volle Inhalt der QuelleGorfer, Markus, Mika T. Tarkka, Mubashir Hanif, Alejandro G. Pardo, Erja Laitiainen und Marjatta Raudaskoski. „Characterization of Small GTPases Cdc42 and Rac and the Relationship Between Cdc42 and Actin Cytoskeleton in Vegetative and Ectomycorrhizal Hyphae of Suillus bovinus“. Molecular Plant-Microbe Interactions® 14, Nr. 2 (Februar 2001): 135–44. http://dx.doi.org/10.1094/mpmi.2001.14.2.135.
Der volle Inhalt der QuelleHerrington, Kari A., Andrew L. Trinh, Carolyn Dang, Ellen O’Shaughnessy, Klaus M. Hahn, Enrico Gratton, Michelle A. Digman und Christine Sütterlin. „Spatial analysis of Cdc42 activity reveals a role for plasma membrane–associated Cdc42 in centrosome regulation“. Molecular Biology of the Cell 28, Nr. 15 (15.07.2017): 2135–45. http://dx.doi.org/10.1091/mbc.e16-09-0665.
Der volle Inhalt der QuelleRincón, Sergio A., Yanfang Ye, M. Antonia Villar-Tajadura, Beatriz Santos, Sophie G. Martin und Pilar Pérez. „Pob1 Participates in the Cdc42 Regulation of Fission Yeast Actin Cytoskeleton“. Molecular Biology of the Cell 20, Nr. 20 (15.10.2009): 4390–99. http://dx.doi.org/10.1091/mbc.e09-03-0207.
Der volle Inhalt der QuelleOceguera-Yanez, Fabian, Kazuhiro Kimura, Shingo Yasuda, Chiharu Higashida, Toshio Kitamura, Yasushi Hiraoka, Tokuko Haraguchi und Shuh Narumiya. „Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis“. Journal of Cell Biology 168, Nr. 2 (10.01.2005): 221–32. http://dx.doi.org/10.1083/jcb.200408085.
Der volle Inhalt der QuelleShitara, Akiko, Lenka Malec, Seham Ebrahim, Desu Chen, Christopher Bleck, Matthew P. Hoffman und Roberto Weigert. „Cdc42 negatively regulates endocytosis during apical membrane maintenance in live animals“. Molecular Biology of the Cell 30, Nr. 3 (Februar 2019): 324–32. http://dx.doi.org/10.1091/mbc.e18-10-0615.
Der volle Inhalt der QuelleBruurs, Lucas J. M., Lisa Donker, Susan Zwakenberg, Fried J. Zwartkruis, Harry Begthel, A. S. Knisely, George Posthuma, Stan F. J. van de Graaf, Coen C. Paulusma und Johannes L. Bos. „ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization“. Journal of Cell Biology 210, Nr. 7 (28.09.2015): 1055–63. http://dx.doi.org/10.1083/jcb.201505118.
Der volle Inhalt der QuelleDissertationen zum Thema "Regulation of Cdc42"
Ravichandran, Yamini. „Cdc42 isoforms : localization, functions and regulation“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS405.
Der volle Inhalt der QuelleMutations in proteins cause diverse developmental disorders, particularly for individuals with rare diseases or for whom a unifying clinical diagnosis is unknown. Cdc42 is one such protein; vital for establishing cell polarity, a crucial step in many biological processes such as cell migration, division and immune responses. Not surprisingly, mutations in Cdc42 cause a range of diseases such as growth dysregulation, facial dysmorphism and neurodevelopmental, immunological, and hematological abnormalities. In vertebrates there are two isoforms of Cdc42. The first being the ubiquitous isoform, has almost exclusively been studied and the role of the second isoform, being the brain isoform, is largely unknown. We have shown that the two isoforms are localized differently in cells. The ubiquitous isoform is mostly found in the cell cytoplasm and at the plasma membrane, while the Brain isoform localizes at the Golgi apparatus and on intracellular vesicles. We have also shown that the two isoforms carry out different functions during cell migration, suggesting that the differences between these two isoforms which only differs by the last 10 amino acids are responsible for their distinct localisation and function. Interestingly, a mutation in the C-ter sequence of Cdc42 ubiquitous isoform alters Cdc42 localisation and causes a generalized pustular psoriasis disease. Two main objectives have been studied in this project 1) the impact of the last amino acids of the protein in Cdc42 localization; and 2) new regulatory mechanisms of Cdc42 responsible for its intracellular localization. These findings will bring a better understanding of pathologies related to Cdc42 mutations
Lu, Ruifeng, und Jean M. Wilson. „Rab14 specifies the apical membrane through Arf6-mediated regulation of lipid domains and Cdc42“. NATURE PUBLISHING GROUP, 2016. http://hdl.handle.net/10150/622499.
Der volle Inhalt der QuelleMurali, Arun [Verfasser]. „Role of XIAP in ubiquitin mediated regulation of Cdc42 and other Rho GTPases / Arun Murali“. Mainz : Universitätsbibliothek Mainz, 2019. http://d-nb.info/1191286649/34.
Der volle Inhalt der QuelleFrancis, Monika K. „Regulation of GRAF1 membrane sculpting function during cell movement“. Doctoral thesis, Umeå universitet, Institutionen för medicinsk kemi och biofysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-111213.
Der volle Inhalt der QuelleMutavchiev, Delyan Rumenov. „Regulation of fission yeast cell polarity by stress-response pathways“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29006.
Der volle Inhalt der QuelleLanger, Torben [Verfasser]. „Der Einfluss des Tumorsuppressorproteins Merlin auf die Regulation der beiden Rho-GTPasen Rac2 und Cdc42 / Torben Langer“. Ulm : Universität Ulm. Medizinische Fakultät, 2013. http://d-nb.info/1036215121/34.
Der volle Inhalt der QuelleYe, Xiangcang. „Role of a CDC42 homologous gene in the regulation of cell polarity and morphogenic transitions in Wangiella dermatitidis /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuellePrimeau, Martin. „Novel mechanisms of regulation of the Cdc42 GTPase- activating protein CdGAP/ARHGAP31, a protein involved in cell migration and adhesion“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96901.
Der volle Inhalt der QuelleLes Rho GTPases forment une famille d'enzymes qui contrôlent de nombreux processus cellulaires, tels que la migration cellulaire et la prolifération, grâce à leurs effets sur le cytosquelette, le trafic membranaire et l'adhésion cellulaire. L'activité de ces interrupteurs moléculaires est modulée par les protéines activatrices de GTPases (GAPs), un groupe de régulateurs négatifs qui inclu CdGAP (Cdc42-GTPase activating protein). Cette protéine régule négativement les Rho GTPases Cdc42 et Rac1 de façon spécifique. Dans la présente étude, nous montrons que CdGAP est régulée par des interactions lipidiques, protéiques et intramoléculaire. Premièrement, nous démontrons qu'une région polybasique (PBR), précédant le domaine GAP et retrouvée dans plusieurs GAP de la famille Rho, est requise pour l'association spécifique de CdGAP avec le phosphatidilinositol-3,4,5-trisphosphate (PI(3,4,5)P3). Nos résultats suggèrent que l'activation des GAP requiert la liaison du PI(3,4,5)P3 à CdGAP dans un contexte in vitro et un PBR intact pour que CdGAP provoque ses effets GAP-dépendants dans un contexte in vivo. Deuxièmement, nous caractérisons le site de liaison du régulateur négatif de CdGAP Intersectin-1. Ce site est localisé dans le domaine riche en résidus basiques (BR) de CdGAP. Nous suggérons que cette interaction, médiée par le domaine SH3D d'Intersectin, requiert de un à trois résidus lysine dans le domaine BR de CdGAP. Troisièmement, nous montrons que CdGAP est régulé de manière négative par son propre domaine C-terminal. Cette observation fait partie d'une étude qui associe deux mutations humaines du gène CdGAP à un syndrôme présentant une combinaison d'aplasie cutis congenita (ACC) et de malformation des doigts et des orteils (TTLD). Les gènes mutants produisent des protéines tronquées qui ont une activité GAP supérieure à la protéine de type sauvage. Nous montrons que ce C-terminal peut lier le domaine GAP de CdGAP, supportant un modèle expliquant comment l'absence du C-terminal induit ce syndrome. En bref, ce travail présente un nouvel aperçu des mécanismes de régulation de CdGAP, une protéine impliquée dans la migration cellulaire et dans l'adhésion des cellules en plus d'être directement impliquée dans une maladie humaine.
Ofo, Enyinnaya. „Flourescent biosensor-based, Cdc42 activity imaging for understanding the regulation of Epidermal Growth Receptor (EGFR) signalling in head and neck cancer“. Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/flourescent-biosensorbased-cdc42-activity-imaging-for-understanding-the-regulation-of-epidermal-growth-receptor-egfr-signalling-in-head-and-neck-cancer(32081fef-10f1-4a3e-ac33-67afbbf78376).html.
Der volle Inhalt der QuelleBretou, Marine. „Regulation of the dynamics of the fusion pore : importance of the SNARE protein synaptobrevin 2 and of the Rho GTPase Cdc42“. Paris 7, 2010. http://www.theses.fr/2010PA077157.
Der volle Inhalt der QuelleExocytosis ends with the formation of a fusion pore. The initial pore is narrow, only small molecules flow through it. The pore then enlarges, releasing larger secretory products. I studied the role of two proteins on the dilation of the pore: the SNARE protein synaptobrevin 2 (Syb2), and the Rho GTPase Cdc42. Zippering of SNAREs in opposed membranes might give energy to catalyze fusion. Inserting a linker between the SNARE core and the transmembrane domain of Syb2 did not modify the frequency of exocytotic events detected by amperometry at 1|jM free [Ca2+] but prevented the occurrence of an extra component of release at higher [Ca2+]. Analysis of these events led to their classification into two groups, due to the rate and extent of dilation of the pore; lengthening Syb2 reduced the population of fast spikes, leaving the slow one unchanged. Slow fusion events might be due to a partial zippering of the SNAREpin while fast fusion events require a tight one, i. E. A short intermembrane distance to assure rapid dilation of the pore. Cdc42 controls actin dynamics. TIRFM experiments showed that its silencing in BON cells reduced the number of granules undergoing full fusion, with little effect on their recruitment and docking at the membrane. Using amperometry, we showed that this silencing reduced the number of high spikes due to fast and complete dilation of the pore, and increased stand-alone foot signals reflecting pores failing to enlarge. Increasing membrane tension rescued the effects of silencing while decreasing it through actin depolymerization mimicked Cdc42 silencing. Cdc42 might control fusion pore dilation by modulating membrane tension
Buchteile zum Thema "Regulation of Cdc42"
Hart, M. J., D. Leonard, Y. Zheng, K. Shinjo, T. Evans und R. A. Cerione. „The Mammalian Homolog of the Yeast Cell-Division-Cycle Protein, CDC42: Evidence for the Involvement of a Rho-Subtype GTPase in Cell Growth Regulation“. In GTPases in Biology I, 579–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78267-1_37.
Der volle Inhalt der QuelleDraetta, Giulio. „Biochemical Regulation of the CDC2 Protein Kinase“. In Cellular Regulation by Protein Phosphorylation, 363–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75142-4_46.
Der volle Inhalt der QuelleNigg, E. A., W. Krek und P. Gallant. „Regulation of the Mitotic CDC2 Protein Kinase“. In DNA Replication and the Cell Cycle, 147–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77040-1_11.
Der volle Inhalt der QuelleMarcote, M. Jesús, Michele Pagano und Giulio Draetta. „Cdc2 Protein Kinase: Structure-Function Relationships“. In Ciba Foundation Symposium 170 - Regulation of the Eukaryotic Cell Cycle, 30–49. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514320.ch4.
Der volle Inhalt der QuelleBerry, Lynne D., und Kathleen L. Gould. „Regulation of Cdc2 activity by phosphorylation at T14/Y15“. In Progress in Cell Cycle Research, 99–105. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5873-6_10.
Der volle Inhalt der QuelleLehner, Christian F., Gabriele Ried, Bodo Stern und Jürgen A. Knoblich. „Cyclins and Cdc2 Kinases in Drosophila: Genetic Analyses in a Higher Eukaryote“. In Ciba Foundation Symposium 170 - Regulation of the Eukaryotic Cell Cycle, 97–114. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514320.ch7.
Der volle Inhalt der QuelleKishimoto, Takeo, und Eiichi Okumura. „In vivo regulation of the entry into M-phase: initial activation and nuclear translocation of cyclin B/Cdc2“. In Progress in Cell Cycle Research, 241–49. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5371-7_19.
Der volle Inhalt der QuelleKnapp, Stefan. „3D Structure and Physiological Regulation of PAKs“. In Paks, Rac/Cdc42 (p21)-activated Kinases, 137–48. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-407198-8.00008-4.
Der volle Inhalt der QuelleGorski, Jerome L. „FGD1 and Faciogenital Dysplasia (Aarskog–Scott Syndrome)“. In Inborn Errors Of Development, 1289–98. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195306910.003.0145.
Der volle Inhalt der QuellePines, Jonathon, und Tony Hunter. „Cyclin-dependent kinases: an entbarrassntent of riches?“ In Cell Cycle Control, 144–76. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199634118.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Regulation of Cdc42"
Soliman, Mario, Chunhua Song, Jonathon L. Payne, Zheng Ge, Chandrika Gowda, Yali Ding, Kimberly J. Payne und Sinisa Dovat. „Abstract 1512: Regulation of the CDC42 signaling pathway by IKZF1 in T-cell acute lymphoblastic leukemia“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1512.
Der volle Inhalt der QuelleNandy, Sushmita B., Alexis Orozco, Gautham Prabhakar, Viktoria Stewart, Stephanie Jones, Paloma Munoz, Ramadevi Subramani, Diego Pedroza und Rajkumar Lakshmanaswamy. „Abstract 1461: miR-424-cdc42, key signaling axis in hyperglycemic regulation of stemness in triple negative breast cancer“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1461.
Der volle Inhalt der QuelleLi, G., S. S. Nair, S. J. Lees und F. W. Booth. „Regulation of G2/M Transition in Mammalian Cells by Oxidative Stress“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82349.
Der volle Inhalt der QuelleZhang, Xiao, und Nan Gao. „Abstract 918: Cdc42 is crucial for intestinal stem cells survival by regulating Wnt and YAP signaling“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-918.
Der volle Inhalt der QuelleZhang, Wenwu, Rong Zhao und Susan J. Gunst. „RhoA Regulates N-WASp And Arp2/3 Mediated Actin Polymerization And Airway Smooth Muscle (ASM) Contraction By Regulating The Activation Of Cdc42 And P21-activated Kinase (PAK)“. In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5303.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Regulation of Cdc42"
Irazoqui, Javier E. Regulation of Cdc42/Rac Signaling in the Establishment of Cell Polarity and Control of Cell Motility. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada434009.
Der volle Inhalt der QuelleIrazoqui, Javier E., und Daniel J. Lew. Regulation of Cdc42/Rac Signaling in the Establishment of Cell Polarity and Control of Cell Motility. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada410349.
Der volle Inhalt der QuelleIrazoqui, Javier E. Regulation of Cdc42/Rac Signaling in the Establishment of Cell Polarity and Control of Cell Motility. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada420886.
Der volle Inhalt der QuelleDelmer, Deborah P., Douglas Johnson und Alex Levine. The Role of Small Signal Transducing Gtpases in the Regulation of Cell Wall Deposition Patterns in Plants. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7570571.bard.
Der volle Inhalt der Quelle