Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Regularized quantiles“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Regularized quantiles" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Regularized quantiles"
Santos, Patricia Mendes dos, Ana Carolina Campana Nascimento, Moysés Nascimento, Fabyano Fonseca e. Silva, Camila Ferreira Azevedo, Rodrigo Reis Mota, Simone Eliza Facioni Guimarães und Paulo Sávio Lopes. „Use of regularized quantile regression to predict the genetic merit of pigs for asymmetric carcass traits“. Pesquisa Agropecuária Brasileira 53, Nr. 9 (September 2018): 1011–17. http://dx.doi.org/10.1590/s0100-204x2018000900004.
Der volle Inhalt der QuelleBang, Sungwan, und Myoungshic Jhun. „Adaptive sup-norm regularized simultaneous multiple quantiles regression“. Statistics 48, Nr. 1 (30.08.2012): 17–33. http://dx.doi.org/10.1080/02331888.2012.719512.
Der volle Inhalt der QuelleZou, Hui, und Ming Yuan. „Regularized simultaneous model selection in multiple quantiles regression“. Computational Statistics & Data Analysis 52, Nr. 12 (August 2008): 5296–304. http://dx.doi.org/10.1016/j.csda.2008.05.013.
Der volle Inhalt der QuelleNascimento, Ana Carolina Campana, Camila Ferreira Azevedo, Cynthia Aparecida Valiati Barreto, Gabriela França Oliveira und Moysés Nascimento. „Quantile regression for genomic selection of growth curves“. Acta Scientiarum. Agronomy 46, Nr. 1 (12.12.2023): e65081. http://dx.doi.org/10.4025/actasciagron.v46i1.65081.
Der volle Inhalt der QuelleLi, Jia, Viktor Todorov und George Tauchen. „ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION“. Econometric Theory 32, Nr. 5 (25.05.2015): 1253–88. http://dx.doi.org/10.1017/s0266466615000171.
Der volle Inhalt der QuelleOliveira, Gabriela França, Ana Carolina Campana Nascimento, Moysés Nascimento, Isabela de Castro Sant'Anna, Juan Vicente Romero, Camila Ferreira Azevedo, Leonardo Lopes Bhering und Eveline Teixeira Caixeta Moura. „Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study“. PLOS ONE 16, Nr. 1 (05.01.2021): e0243666. http://dx.doi.org/10.1371/journal.pone.0243666.
Der volle Inhalt der QuelleSun, Pengju, Meng Li und Hongwei Sun. „Quantile Regression Learning with Coefficient Dependent lq-Regularizer“. MATEC Web of Conferences 173 (2018): 03033. http://dx.doi.org/10.1051/matecconf/201817303033.
Der volle Inhalt der QuellePapp, Gábor, Imre Kondor und Fabio Caccioli. „Optimizing Expected Shortfall under an ℓ1 Constraint—An Analytic Approach“. Entropy 23, Nr. 5 (24.04.2021): 523. http://dx.doi.org/10.3390/e23050523.
Der volle Inhalt der QuelleWu, Hanwei, und Markus Flierl. „Vector Quantization-Based Regularization for Autoencoders“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 04 (03.04.2020): 6380–87. http://dx.doi.org/10.1609/aaai.v34i04.6108.
Der volle Inhalt der QuelleLi, Meng, und Hong-Wei Sun. „Asymptotic analysis of quantile regression learning based on coefficient dependent regularization“. International Journal of Wavelets, Multiresolution and Information Processing 13, Nr. 04 (Juli 2015): 1550018. http://dx.doi.org/10.1142/s0219691315500186.
Der volle Inhalt der QuelleDissertationen zum Thema "Regularized quantiles"
Thurin, Gauthier. „Quantiles multivariés et transport optimal régularisé“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0262.
Der volle Inhalt der QuelleThis thesis is concerned with the study of the Monge-Kantorovich quantile function. We first address the crucial question of its estimation, which amounts to solve an optimal transport problem. In particular, we try to take advantage of the knowledge of the reference distribution, that represents additional information compared with the usual algorithms, and which allows us to parameterize the transport potentials by their Fourier series. Doing so, entropic regularization provides two advantages: to build an efficient and convergent algorithm for solving the semi-dual version of our problem, and to obtain a smooth and monotonic empirical quantile function. These considerations are then extended to the study of spherical data, by replacing the Fourier series with spherical harmonics, and by generalizing the entropic map to this non-Euclidean setting. The second main purpose of this thesis is to define new notions of multivariate superquantiles and expected shortfalls, to complement the information provided by the quantiles. These functions characterize the law of a random vector, as well as convergence in distribution under certain assumptions, and have direct applications in multivariate risk analysis, to extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk
Hashem, Hussein Abdulahman. „Regularized and robust regression methods for high dimensional data“. Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9197.
Der volle Inhalt der QuelleSchulze, Bert-Wolfgang, Vladimir Nazaikinskii und Boris Sternin. „The index of quantized contact transformations on manifolds with conical singularities“. Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2527/.
Der volle Inhalt der QuelleBücher zum Thema "Regularized quantiles"
Godsey, William D. The Sinews of Habsburg Power. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809395.001.0001.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Regularized quantiles"
Ahmad, Tawsif, und Ning Zhou. „Enhancing Solar Power Forecasting with Regularized Constrained Quantile Regression Averaging and Bootstrapping Techniques“. In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688655.
Der volle Inhalt der QuelleLane, R. G., R. A. Johnston, R. Irwan und T. J. Connolly. „Regularized blind deconvolution“. In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/srs.1998.stua.2.
Der volle Inhalt der QuelleJongebloed, Rolf, Erik Bochinski, Lieven Lange und Thomas Sikora. „Quantized and Regularized Optimization for Coding Images Using Steered Mixtures-of-Experts“. In 2019 Data Compression Conference (DCC). IEEE, 2019. http://dx.doi.org/10.1109/dcc.2019.00044.
Der volle Inhalt der QuelleSun, Hanbo, Zhenhua Zhu, Yi Cai, Xiaoming Chen, Yu Wang und Huazhong Yang. „An Energy-Efficient Quantized and Regularized Training Framework For Processing-In-Memory Accelerators“. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020. http://dx.doi.org/10.1109/asp-dac47756.2020.9045192.
Der volle Inhalt der QuelleYu, Shujian, Luis Sanchez Giraldo und Jose Principe. „Information-Theoretic Methods in Deep Neural Networks: Recent Advances and Emerging Opportunities“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/633.
Der volle Inhalt der QuelleProkopchina, Svetlana, und Veronika Zaslavskaia. „Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions“. In 9th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.131805.
Der volle Inhalt der QuelleChen, Yuzhao, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu und Junzhou Huang. „On Self-Distilling Graph Neural Network“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/314.
Der volle Inhalt der QuelleSingh, Yuvraj, Adithya Jayakumar und Giorgio Rizzoni. „Data-Driven Estimation of Coastdown Road Load“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2276.
Der volle Inhalt der Quelle