Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Refroidissement des mélasses grises“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Refroidissement des mélasses grises" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Refroidissement des mélasses grises"
Triche, Christine. „Refroidissement et dynamique d'atomes dans des potentiels lumineux : mélasses grises, réseaux de plots et réseaux brillants“. Phd thesis, Ecole Polytechnique X, 1997. http://tel.archives-ouvertes.fr/tel-00011782.
Der volle Inhalt der QuelleSievers, Franz. „Ultracold Fermi mixtures and simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066221/document.
Der volle Inhalt der QuelleThis thesis reports on novel techniques for experimental studies of ultracold, fermionic lithium and potassium quantum gases. The new parts of our 6Li-40K apparatus are described and characterised. We present a narrow-linewidth, all-solid-state laser source, emitting 5W at 671 nm. We employ the laser source in the context of a novel sub-Doppler cooling mechanism, operating on the D1 atomic transition of alkali atoms, for laser cooling of lithium. This D1 molasses allows us to simultaneously cool a mixture of 6Li and 40K atoms to deep sub-Doppler temperatures, while retaining large atom numbers and high atomic densities. The measured phase space densities after the molasses phase are on the order of 10-4 for both 6Li and 40K. The D1 laser cooling paves the way for fast evaporation to quantum degeneracy in magnetic and optical traps. We present the evaporative cooling of 40K atoms. The evaporation starts in an optically plugged magnetic quadrupole trap and continues in an optical dipole trap. At the end of the evaporation, we obtain a quantum degenerate spin-mixture of 40K atoms, with more than 7x105 atoms in each of the two spin states and T/TF<0.34
Ferrier-Barbut, Igor. „Mixtures of Bose and Fermi Superfluids“. Thesis, Paris, Ecole normale supérieure, 2014. http://www.theses.fr/2014ENSU0012/document.
Der volle Inhalt der QuelleManifestations of Quantum Physics at the thermodynamical level are found in a broadrange of physical systems. A famous example is superfluidity, discovered at the beginningof the 20th century and found in many different situations, from liquid helium to neutronstars. Dilute ultracold gases offer a unique versatility to engineer quantum many-bodysystems, which can be directly compared with theory thanks to the controllability of theirenvironment. In this thesis we present several experimental investigations led on ultracoldlithium gases. Lithium provides the possibility to study ensembles of bosons andfermions, with controllable interactions between the constituents. We present experimentaltechniques for preparation and studies of degenerate gases of lithium, with prospects forimprovement of the existing methods. We first report on an investigation of three-bodyrecombination of bosons under a resonant two-body interaction. This study, quantitativelycompared with theory constitutes a benchmark for further studies of the unitary Bose gas.Finally, we present the first experimental realization of a mixture of a Bose superfluid witha Fermi superfluid. We demon- strate that both components are in the superfluid regime,and that the counter-flow motion between them possesses the characteristics of superfluidflow, with the absence of viscosity below a critical velocity, and an onset of friction above.Using collective oscillations of the mixture, we measure the coupling between the twosuperfluids in close agreement with a theoretical model
Kretzschmar, Norman. „Experiments with Ultracold Fermi Gases : quantum Degeneracy of Potassium-40 and All-solid-state Laser Sources for Lithium“. Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0012/document.
Der volle Inhalt der QuelleThis thesis presents novel techniques for the experimental study of ultracold quantum gases of fermionic lithium and potassium atoms. In the first part of this thesis, we describe the design and characterization of the new components of our experimental apparatus capable of trapping and cooling simultaneously $^6$Li and $^{40}$K atoms to ultracold temperatures. We report on a novel sub-Doppler cooling mechanism, operating on the D$_1$ line transition of alkali atoms, for laser cooling of lithium and potassium. The measured phase space densities after this molasses phase are on the order of $10^{-4}$ for both $^6$Li and $^{40}$K. We present the forced evaporative cooling of $^{40}$K atoms, starting in an optically plugged magnetic quadrupole trap and continuing in an optical dipole trap. In this context, we report on the production of a quantum degenerate Fermi gas of $1.5\times10^5$ atoms $^{40}$K in a crossed dipole trap with $T/T_{_F} = 0.17$, paving the way for the study of strongly interacting superfluids of $^{40}$K. In the second part of this thesis, we present a narrow-linewidth, all-solid-state laser source, emitting 5.2 W in the vicinity of the lithium D-line transitions at 671 nm. The source is based on a diode-end-pumped unidirectional ring laser operating on the 1342 nm transition of Nd:YVO$_4$, capable of producing 6.5 W of single-mode light delivered in a diffraction-limited beam. We report on three different approaches for second-haromonic generation of its output beam, namely by employing an enhancement cavity containing a ppKTP crystal, intracavity frequency doubling and a ppZnO:LN waveguide structure
Fouche, Lauriane. „Gaz quantiques de potassium 39 à interactions contrôlables“. Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0003/document.
Der volle Inhalt der QuellePotassium 39 is an alkali allowing to control the interactions between atoms thanks to Feshbach resonances. This thesis presents a fast and efficient way to produce all-optical Bose-Einstein condensates of 39K. Our technique is first taking advantage of gray molasses cooling leading to a cold enough sample to directly load an optical trap. Then an optical evaporation is performed near a Feshbach resonance to control the collision rate. Studies in various spin mixtures have allowed us to observe new p-wave Feshbach resonances and a d-wave Feshbach resonance. The later presents unusual properties and has been studied in details to understand the collision processes involved. The model developped is a two stage model, each one of them involving a two body collision. It explains the experimental results obtained. In the produced 39K degenerate Bose gases, tuning interactions near the Feshbach resonance at 560,7 Gauss for the atoms in |F=1,mF=-1> has allowed us to adress different physical problems. For repulsive interactions, we study the expansion of a Bose-Einstein condensate in the 1D-3D dimensional crossover. For attractive interactions we produce bright solitons in a one-dimensional optical trap. Perspectives concerning the study of those degenerate self-confined Bose gases in disordered media are also discussed
Castin, Yvan. „Les limites du refroidissement laser dans les mélasses optiques à une dimension“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 1992. http://tel.archives-ouvertes.fr/tel-00011882.
Der volle Inhalt der QuelleRio, Fernandes Diogo. „Trapping and cooling of fermionic alkali atoms to quantum degeneracy : Sub-Doppler cooling of Potassium-40 and Lithium-6 in gray molasses“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066689.
Der volle Inhalt der QuelleThis thesis describes the design, construction and characterization of an apparat us capable of trapping and cooling fermionic atoms of 6Li and 40K to ultracold temperatures.The study of mixtures of degenerate Fermi gases opens the door for the creation of new many-body quantum systems.We present a novel laser cooling technique able to simultaneously cool 6Li and 40K to the sub-Doppler regime based on the gray molasses scheme operating on the D1 atomic transition. This strategy enhances the phase space density of both atomic species to 104, the highest value reported in the literature for laser cooled 6Li and 40K. The optimization of a device able to transport a magnetically trapped atomic cloud from the MOT chamber to a science cell is described. In this cell evaporative cooling is performed first in a plugged magnetic quadrupole trap and then in an optical dipoletrap. We report the production of a quantum degenerate Fermi gas of 1.1x106 atoms40K in a crossed dipole trap with T/TF = 0.27, paving the way for the creation of strongly interacting superfluids of 40K
Suchet, Daniel Léo. „Simulating the dynamics of harmonically trapped Weyl particles with cold atoms Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line : Theory and experiment Analog simulation of Weyl particles with cold atoms“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066262.
Der volle Inhalt der QuelleDuring my PhD, I contributed to the design and construction of the Fermix experiment, dedicated to the study of a 6Li-40K fermionic mixture at ultra low temperatures. Our main results are twofold. First, we developed a new sub-Doppler laser cooling scheme, taking advantage of the existence of dark states in the D1 line of alkali atoms. This so-called \emph{grey molasses} allows for a phase space density up to 10⁻⁴, the highest value reported for the simultaneous laser cooling of those two species. The improvement due to this cooling step enabled the production of a quantum degenerate 40K gas in a dipole trap, with 3x10⁵ atoms in two spin states at 62 nK, corresponding to 17% of the Fermi temperature. Second, introducing a canonical mapping, we showed that non-interacting ultra-relativistic particles (Weyl fermions) in a harmonic trap can be simulated by cold fermions confined in a quadrupole potential. We study experimentally, numerically and theoretically the relaxation of these systems towards a steady state which can not be described by a Boltzman distribution, but rather presents strongly anisotropic effective temperatures. This analogy also allows us to translate fundamental properties of relativistic particles in the language of cold atoms. In particular, we demonstrate that the Klein paradox is equivalent to Majorana losses. Finally, we present a theoretical study of the long range interactions between particles confined in two 2D layers immersed in a 3D atomic cloud
Salomon, Guillaume. „Production tout optique de condensats de Bose-Einstein de 39K : des interactions contrôlables pour l’étude de gaz quantiques désordonnés en dimensions réduites“. Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://www.theses.fr/2014IOTA0009/document.
Der volle Inhalt der QuelleThis thesis presents the all optical production of 39K Bose-Einstein condensates. A key point in the process is the sub-Doppler cooling that allows for an efficient loading of an optical dipole trap. To this aim we use a gray molasses scheme working on the blue side of the D1 line of this alkali that leads to a high phase space density and a high number of trapped atoms in a 1550 nm optical trap. The cloud is then polarized and compressed in a crossed dipole trap before starting an efficient forced evaporation close to a Feshbach resonance. This process allows us to produce Bose-Einstein condensates every 7 seconds with our experiment. Those degenerate clouds represent the starting point of experiments aiming to study the influence of disorder on quantum gases in low dimensions. We discuss the perspectives to study of the phase diagram of the two-dimensional disordered Bose gas as well as the Anderson localization phenomenon in two dimensions and the behaviour of bright solitons in a disordered potential in a one-dimensional geometry
Suchet, Daniel Léo. „Simulating the dynamics of harmonically trapped Weyl particles with cold atoms“. Thesis, 2016. http://www.theses.fr/2016PA066262/document.
Der volle Inhalt der QuelleDuring my PhD, I contributed to the design and construction of the Fermix experiment, dedicated to the study of a 6Li-40K fermionic mixture at ultra low temperatures. Our main results are twofold. First, we developed a new sub-Doppler laser cooling scheme, taking advantage of the existence of dark states in the D1 line of alkali atoms. This so-called \emph{grey molasses} allows for a phase space density up to $10^{-4}$, the highest value reported for the simultaneous laser cooling of those two species. The improvement due to this cooling step enabled the production of a quantum degenerate 40K gas in a dipole trap, with 3x10^5 atoms in two spin states at 62 nK, corresponding to 17% of the Fermi temperature. Second, introducing a canonical mapping, we showed that non-interacting ultra-relativistic particles (Weyl fermions) in a harmonic trap can be simulated by cold fermions confined in a quadrupole potential. We study experimentally, numerically and theoretically the relaxation of these systems towards a steady state which can not be described by a Boltzman distribution, but rather presents strongly anisotropic effective temperatures. This analogy also allows us to translate fundamental properties of relativistic particles in the language of cold atoms. In particular, we demonstrate that the Klein paradox is equivalent to Majorana losses.Finally, we present a theoretical study of the long range interactions between particles confined in two 2D layers immersed in a 3D atomic cloud