Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Refractive index variation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Refractive index variation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Refractive index variation"
Paroha, P. P. „Variation in refractive index of sugar solution with concentration using Newton’s rings“. YMER Digital 21, Nr. 06 (29.06.2022): 1129–32. http://dx.doi.org/10.37896/ymer21.06/a8.
Der volle Inhalt der QuelleTwu, Ruey-Ching, und Chia-Wei Hsueh. „Phase interrogation birefringent-refraction sensor for refractive index variation measurements“. Sensors and Actuators A: Physical 253 (Januar 2017): 85–90. http://dx.doi.org/10.1016/j.sna.2016.11.029.
Der volle Inhalt der QuelleSediq, Khalid N., Fahmi F. Muhammadsharif, Simko O. Ramadan und Shalaw Z. Sedeeq. „Design and Study of a Nanocavity-based One-dimensional Photonic Crystal for Potential Applications in Refractive Index Sensing“. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, Nr. 2 (09.10.2023): 95–98. http://dx.doi.org/10.14500/aro.11298.
Der volle Inhalt der QuelleKim, Young L., Joseph T. Walsh, Thomas K. Goldstick und Matthew R. Glucksberg. „Variation of corneal refractive index with hydration“. Physics in Medicine and Biology 49, Nr. 5 (13.02.2004): 859–68. http://dx.doi.org/10.1088/0031-9155/49/5/015.
Der volle Inhalt der QuelleSingh, Nageshwar. „Spectral Intensity Variation by the Correlation Function of Refractive Index Fluctuations of the Liquid Medium“. International Journal of Optics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/525142.
Der volle Inhalt der QuelleRUOFF, ARTHUR L., und KOUROS GHANDEHARI. „THE REFRACTIVE INDEX AT THE CENTER OF THE SURFACE OF PRESSURIZED DIAMOND ANVIL TIPS“. Modern Physics Letters B 07, Nr. 15 (30.06.1993): 1039–43. http://dx.doi.org/10.1142/s021798499300103x.
Der volle Inhalt der QuelleRUOFF, ARTHUR L., und KOUROS GHANDEHARI. „THE REFRACTIVE INDEX OF HYDROGEN AS A FUNCTION OF PRESSURE“. Modern Physics Letters B 07, Nr. 13n14 (20.06.1993): 907–11. http://dx.doi.org/10.1142/s0217984993000904.
Der volle Inhalt der QuelleNaoi, Yusaku. „Sensor for refractive index variation of an optical surface using a high-refractive-index waveguide“. Optical Engineering 46, Nr. 10 (01.10.2007): 104601. http://dx.doi.org/10.1117/1.2799182.
Der volle Inhalt der QuelleSzekeres, A., K. Christova und A. Paneva. „Stress-induced refractive index variation in dry SiO2“. Philosophical Magazine B 65, Nr. 5 (Mai 1992): 961–66. http://dx.doi.org/10.1080/13642819208217913.
Der volle Inhalt der QuelleLagomarsino, S., P. Olivero, S. Calusi, D. Gatto Monticone, L. Giuntini, M. Massi, S. Sciortino, A. Sytchkova, A. Sordini und M. Vannoni. „Complex refractive index variation in proton-damaged diamond“. Optics Express 20, Nr. 17 (09.08.2012): 19382. http://dx.doi.org/10.1364/oe.20.019382.
Der volle Inhalt der QuelleDissertationen zum Thema "Refractive index variation"
Stephenson, David. „Modeling variation in the refractive index of optical glasses /“. Online version of thesis, 1990. http://hdl.handle.net/1850/10952.
Der volle Inhalt der QuelleStein, Benedikt. „Plasmonic devices for surface optics and refractive index sensing“. Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00849967.
Der volle Inhalt der QuelleDe, Freitas Jolyon Mark O. „Interferometric characterisation of refractive index variations in vitreous silica“. Thesis, University of Aberdeen, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387257.
Der volle Inhalt der QuelleAu, L. B. „Wave propagation and grating formation in photorefractive materials“. Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235016.
Der volle Inhalt der QuelleModaresialam-Bochet, Mehrnaz. „Fabrication of dielectric nanostructures by nano imprint lithography and sol-gel chemistry for optical applications“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0345.
Der volle Inhalt der QuelleThe purpose of this thesis is to develop methods to elaborate nanostructured metasurfaces by combining sol-gel chemistry and nano imprint lithography (soft-NIL), which are of relevant scientific and technological interest as they inscribe themselves in the general trend of developing affordable and time-saving processes, using biocompatible and non-toxic materials. Firstly, we showcase the elaboration of new efficient antireflection coatings made of water-repellent methylated silica nipple-dimple nano-architectures (pillars and holes). The interest of these results relies on the possibility to drastically reduce reflection in a broad spectral interval and within a broad acceptance angle of the incident light, rendering them adapted to photovoltaic, glass covers, laser windows, and much more. Furthermore, these nano-materials feature a high chemical, thermal and mechanical stability. Secondly, a highly sensitive optical gas sensor was elaborated based on TiO2 nanopatterns embedded in a thin microporous hybrid-SiO2 sensitive coating. The reflectivity of the layer has then been measured in the visible range with increasing vapor pressure. The measured sensing performances are sensitivity S up to 4500 nm/RIU (0.2 nm/ppm), reflection intensity changes up to R* = 17 (0.55×10-3 R/ppm), FOM up to 12, with a Q-Factor of 4 for a specific wavelength, which is compatible with sub-ppm gas detection by simple specular reflection. Finally, a novel generation of dielectric 3D stack nanostructured patterns (e.g. TiO2 pillars - mesoporous SiO2 - TiO2 pillars) was developed as an innovative optical system that has never been experimentally studied before
Büttner, Lars, Felix Schmieder, Martin Teich, Nektarios Koukourakis und Jürgen Czarske. „Application of adaptive optics for flexible laser induced ultrasound field generation and uncertainty reduction in measurements“. SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35156.
Der volle Inhalt der QuelleJovan, Bajčetić. „Modelovanje uticaja intenzivnih promena Sunčevog zračenja na prostiranje radio talasa“. Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=102468&source=NDLTD&language=en.
Der volle Inhalt der QuelleThis thesis presents the research results of intensive solar radiation variationinfluence on radio propagation. The first part of presented results is related to theeffects of non-periodic radiation within X-ray wavelength during Solar X-flare.Modelling of ionosphere D-layer medium is performed during all time duration ofadditional ionization energy, as well as radio propagation characteristics within thismedium. The second part of the measured results presents periodic variation ofreceiving microwave radio signal level of experimental Line-of-site communicationduring the morning hours. It is shown that this variation is highly correlated withgeomagnetic field component values variation and that is caused by the Sunappearance on the horizon. Based on the experimentally collected results, the modelthat describes this variation during morning hours is proposed.
Huang, Wei-Yin, und 黃唯音. „The influence of refractive index variation on the performance of ARROW devices“. Thesis, 1997. http://ndltd.ncl.edu.tw/handle/67794598628038099020.
Der volle Inhalt der Quelle國立交通大學
電子工程學系
85
In this thesis, we develop the necessary methods to analyze the influence of the refractive index variation for the antiresonant reflectingoptical waveguide (ARROW) devices. For the two dimentional slab ARROW, we usethe characteristic matrix method and beam propagation method (BPM); then compare their results. It can be seen that the performance of a slab ARROW isvery sensitive to the refractive index variation, and we can use this characteristic in dual slab ARROW to design optical switches or various sensors in the future. For the three dimentional strip ARROW, we use the eigenvalue method, the effective index method, and BPM; then compare their results.It can be seen that the performance of a strip ARROW is very good, and its maximum coupling efficiency will not significantly be influenced by the refractive index variation. The results give a useful reference for the designand fabrication of the ARROW devices.
Lin, You-Shen, und 林祐紳. „Full-field Refractive Index Variation Measurement Based on Phase-type Angle-deviation Method“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/p4n74w.
Der volle Inhalt der Quelle國立虎尾科技大學
光電與材料科技研究所
103
We proposed the phase-type angle-deviation method to measure the full-field of refractive index variation of a liquid.The phase measurement is based on phase-shift interferometry and the use of surface plasmon resonance (SPR) sensor. The phase shift between the s-and p-polarizations due to the angle deviation in SPR sensor is caused by the refractive index variation. The method can plot the full-field image of refractive index in short time and realize the liquid flow status. The SPR sensor can enhance the phase sensitivity and the refractive index resolution can be better than 10-8(RIU).
Fan, Hsin-Chen, und 范新辰. „Utilizing the laser swept source to detect the micro-variation of refractive index in devices“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3v89p7.
Der volle Inhalt der Quelle國立交通大學
光電系統研究所
106
Refractive index is one of the most important physical parameters in a substance. Once we grasp the refractive index of a substance, then we can understand the optical characteristics, concentration, purity or dispersion of the substance, even the temperature of the object to a certain extent. In this paper, we choose microfluidic channel, which has the advantage of the thinness that can make the Fabry–Pérot phenomenon more obviously, as a container for measuring the small refractive index changes produced by different concentrations of the solution. On the other hand, we use a homemade laser swept source equipped with a galvano mirror, so we can flexibly adjust the scanning frequency in the resonant cavity, and combine a data acquisition card with a high-speed sampling rate to greatly increase the number of sampling points scanned, thereby improving the accuracy of the refractive index which can be calculated. In addition, it’s a non-contacting method of measurement, which can reduce the weight or temperature limitation of the object to be tested. It can also measure a wide range of refractive index. In conclusion, this method for measuring the refractive index is quite ideal.
Bücher zum Thema "Refractive index variation"
Center, Lewis Research, Hrsg. Effect of refractive index variation on two-wavelength interferometry for fluid measurements. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, Hrsg. Effect of refractive index variation on two-wavelength interferometry for fluid measurements. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Den vollen Inhalt der Quelle findenJoo, Kyung Ro. Effects of variation of index of refraction of atmosphere on Cerenkov radiation. 1985.
Den vollen Inhalt der Quelle findenBirch, K. P. Evaluation of the Effect of Variations in the Refractive Index of Air Upon the Uncertainty of Industrial Length Measurements. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Refractive index variation"
Tabassum, Rana, und Ravi Kant. „Plasmonic Probing of Refractive Index Variations Using MWCNT@Ta2O5 Core–shell Nanoparticles“. In Springer Proceedings in Physics, 339–45. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_34.
Der volle Inhalt der QuelleNewnham, Robert E. „Dispersion and absorption“. In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0028.
Der volle Inhalt der QuelleNewnham, Robert E. „Photoelasticity and acousto-optics“. In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0029.
Der volle Inhalt der QuelleMeshginqalam, Bahar, Mohammad Taghi Ahmadi, Hamid Toloue Ajili Tousi, Arash Sabatyan und Anthony Centeno. „Surface Plasmon Resonance-Based Sensor Modeling“. In Handbook of Research on Nanoelectronic Sensor Modeling and Applications, 361–94. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0736-9.ch014.
Der volle Inhalt der QuelleHuaraca Aparco, Rosa, María del Carmen Delgado Laime, Fidelia Tapia Tadeo, Henrry Wilfredo Agreda Cerna, Edwin Mescco Cáceres, Juan Alarcón Camacho, Hans Yuri Godoy Medina et al. „Bioactive Compounds and Antioxidant Activity of Essential Oil of Species of the Genus Tagetes“. In Recent Developments in Antioxidants From Natural Sources [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109254.
Der volle Inhalt der QuelleAyub Hamdani, Mursal, und Gausia Qazi. „Modelling Fabrication Variability in Silicon Photonic Devices“. In Photonic Materials: Recent Advances and Emerging Applications, 265–83. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010016.
Der volle Inhalt der QuelleGahlot, Ajay Pratap Singh. „Optical Dispersion: Variation of Refractive Index of Polypyrrole and SnO2 Nanocomposite Thin Film with Incident Wavelength“. In Fundamental Research and Application of Physical Science Vol. 7, 75–81. B P International (a part of SCIENCEDOMAIN International), 2023. http://dx.doi.org/10.9734/bpi/fraps/v7/5977c.
Der volle Inhalt der QuelleShekari Firouzjaei, Ali, Seyed Salman Afghahi und Ali-Asghar Ebrahimi Valmoozi. „Emerging Trends, Applications, and Fabrication Techniques in Photonic Crystal Technology“. In Recent Advances and Trends in Photonic Crystal Technology. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1002455.
Der volle Inhalt der QuelleMasters, Barry R., und T. C. So Peter. „Nonlinear Microscopy Applied to Dermatology“. In Handbook of Biomedical Nonlinear Optical Microscopy, 797–824. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195162608.003.0032.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Refractive index variation"
Pagano, Robert J., Paul K. Manhart und Paul T. Sherman. „Measurement of refractive index and dispersion in axial gradient material using prism refractometry“. In Gradient-Index Optical Imaging Systems. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/giois.1994.gwa3.
Der volle Inhalt der QuelleNorland, Richard. „Temporal Variation of the Refractive Index in Coastal Waters“. In 2006 International Radar Symposium. IEEE, 2006. http://dx.doi.org/10.1109/irs.2006.4338040.
Der volle Inhalt der QuelleHoefer, Carolyn S. „Thermal Variation Of The Refractive Index In Optical Materials“. In 30th Annual Technical Symposium, herausgegeben von Larry G. DeShazer. SPIE, 1987. http://dx.doi.org/10.1117/12.939628.
Der volle Inhalt der QuelleLi, Wei, Yitao Liang und Maixia Fu. „The radio propagation affected by variation of refractive index“. In 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). IEEE, 2009. http://dx.doi.org/10.1109/mape.2009.5355602.
Der volle Inhalt der QuelleGhatak, Ajoy K., I. C. Goyal und Rajeev Jindal. „Modes of waveguides with sinusoidal variation of refractive index“. In International Conference on Fiber Optics and Photonics: Selected Papers from Photonics India '98, herausgegeben von Anurag Sharma, Banshi D. Gupta und Ajoy K. Ghatak. SPIE, 1999. http://dx.doi.org/10.1117/12.347991.
Der volle Inhalt der QuelleHeo, Duchang, Yun-Seok Kwak, Tae-kyung Kim und Young-Wook Choi. „Tapered laser diode with linearly effective-refractive-index variation waveguide“. In SPIE LASE, herausgegeben von Mark S. Zediker. SPIE, 2015. http://dx.doi.org/10.1117/12.2080439.
Der volle Inhalt der QuelleHiware, Sameer, Pradyot Porwal, Rajbabu Velmurugan und Subhasis Chaudhuri. „Modeling of PSF for refractive index variation in fluorescence microscopy“. In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6115879.
Der volle Inhalt der QuelleNasiri Avanaki, Mohammad Reza, Steven Daveluy, Darius Mehregan, Zahra Turani, rayyan Manwar und emad fatemizadeh. „Compensation of refractive index variation in optical coherence tomography images“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, herausgegeben von Joseph A. Izatt und James G. Fujimoto. SPIE, 2019. http://dx.doi.org/10.1117/12.2510561.
Der volle Inhalt der QuelleCarniglia, C. K., K. N. Schrader, P. A. O'Connell und S. R. Tuenge. „Refractive Index Determination using an Orthogonalized Dispersion Equation“. In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oic.1988.wc3.
Der volle Inhalt der QuelleFeise, D., G. Blume, Chr Kaspari, K. Paschke und G. Erbert. „Variation of refractive index step of 635nm ridge waveguide lasers for optimized index guiding“. In SPIE LASE. SPIE, 2011. http://dx.doi.org/10.1117/12.873397.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Refractive index variation"
Sommargren, G. E., D. W. Phillion, M. A. Johnson und L. S. Bradsher. Measurement of the Variations in Thickness and Refractive Index of NIF Crystals. Office of Scientific and Technical Information (OSTI), Januar 2002. http://dx.doi.org/10.2172/15002093.
Der volle Inhalt der QuelleOstashev, Vladimir, Michael Muhlestein und D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Der volle Inhalt der Quelle