Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Reductive reactions.

Zeitschriftenartikel zum Thema „Reductive reactions“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Reductive reactions" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Koóš, Peter, Martin Markovič, Pavol Lopatka und Tibor Gracza. „Recent Applications of Continuous Flow in Homogeneous Palladium Catalysis“. Synthesis 52, Nr. 23 (03.08.2020): 3511–29. http://dx.doi.org/10.1055/s-0040-1707212.

Der volle Inhalt der Quelle
Annotation:
Considerable advances have been made using continuous flow chemistry as an enabling tool in organic synthesis. Consequently, the number of articles reporting continuous flow methods has increased significantly in recent years. This review covers the progress achieved in homogeneous palladium catalysis using continuous flow conditions over the last five years, including C–C/C–N cross-coupling reactions, carbonylations and reductive/oxidative transformations.1 Introduction2 C–C Cross-Coupling Reactions3 C–N Coupling Reactions4 Carbonylation Reactions5 Miscellaneous Reactions6 Key to Schematic Symbols7 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nicholas, Kenneth M., und Chandrasekhar Bandari. „Deoxygenative Transition-Metal-Promoted Reductive Coupling and Cross-Coupling of Alcohols and Epoxides“. Synthesis 53, Nr. 02 (07.10.2020): 267–78. http://dx.doi.org/10.1055/s-0040-1707269.

Der volle Inhalt der Quelle
Annotation:
AbstractThe prospective utilization of abundant, CO2-neutral, renewable feedstocks is driving the discovery and development of new reactions that refunctionalize oxygen-rich substrates such as alcohols and polyols through C–O bond activation. In this review, we highlight the development of transition-metal-promoted reactions of renewable alcohols and epoxides that result in carbon–carbon bond-formation. These include reductive self-coupling reactions and cross-coupling reactions of alcohols with alkenes and arene derivatives. Early approaches to reductive couplings employed stoichiometric amounts of low-valent transition-metal reagents to form the corresponding hydrocarbon dimers. More recently, the use of redox-active transition-metal catalysts together with a reductant has enhanced the practical applications and scope of the reductive coupling of alcohols. Inclusion of other reaction partners with alcohols such as unsaturated hydrocarbons and main-group organometallics has further expanded the diversity of carbon skeletons accessible and the potential for applications in chemical synthesis. Catalytic reductive coupling and cross-coupling reactions of epoxides are also highlighted. Mechanistic insights into the means of C–O activation and C–C bond formation, where available, are also highlighted.1 Introduction2 Stoichiometric Reductive Coupling of Alcohols3 Catalytic Reductive Coupling of Alcohols3.1 Heterogeneous Catalysis3.2 Homogeneous Catalysis4 Reductive Cross-Coupling of Alcohols4.1 Reductive Alkylation4.2 Reductive Addition to Olefins5 Epoxide Reductive Coupling Reactions6 Conclusions and Future Directions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dutta, Lona, Atanu Mondal und S. S. V. Ramasastry. „Metal‐Free Reductive Aldol Reactions“. Asian Journal of Organic Chemistry 10, Nr. 4 (10.03.2021): 680–91. http://dx.doi.org/10.1002/ajoc.202000693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pal, Sudipta, You-Yun Zhou und Christopher Uyeda. „Catalytic Reductive Vinylidene Transfer Reactions“. Journal of the American Chemical Society 139, Nr. 34 (17.08.2017): 11686–89. http://dx.doi.org/10.1021/jacs.7b05901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lin, Ivan J. B., Hayder A. Zahalka und Howard Alper. „Rhodium catalyzed reductive esterification reactions“. Tetrahedron Letters 29, Nr. 15 (Januar 1988): 1759–62. http://dx.doi.org/10.1016/s0040-4039(00)82035-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Anderson, James C., Alexander J. Blake, Paul J. Koovits und Gregory J. Stepney. „Diastereoselective Reductive Nitro-Mannich Reactions“. Journal of Organic Chemistry 77, Nr. 10 (02.05.2012): 4711–24. http://dx.doi.org/10.1021/jo300535h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Werth, Jacob, Kristen Berger und Christopher Uyeda. „Cobalt Catalyzed Reductive Spirocyclopropanation Reactions“. Advanced Synthesis & Catalysis 362, Nr. 2 (22.11.2019): 348–52. http://dx.doi.org/10.1002/adsc.201901293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Zhipeng A., Yan-Yu Liang und Ji-Shen Zheng. „Reductive Amination/Alkylation Reactions: The Recent Developments, Progresses, and Applications in Protein Chemical Biology Studies“. Current Organic Synthesis 15, Nr. 6 (29.08.2018): 755–61. http://dx.doi.org/10.2174/1570179415666180522093905.

Der volle Inhalt der Quelle
Annotation:
The chemical modifications of proteins or protein complexes have been a challenging but fruitful task in the post-genomic era. Bioorthogonal reactions play an important role for the purpose of selective functionalization, localization, and labeling of proteins with natural or non-natural structures. Among these reactions, reductive amination stands out as one of the typical bioorthogonal reactions with high efficiency, good biocompatibility, and versatile applications. However, not many specific reviews exist to discuss the mechanism, kinetics, and their applications in a detailed manner. In this manuscript, we aim to summarize some current developments and mechanistic studies of reductive amination reaction and its applications. We hope reductive amination reaction can contribute to a wider scope of protein chemistry research en route in the chemical biology frontier as one of the well-known bioorthogonal reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Paterson, Lorna A., Sandra E. Hill, John R. Mitchell und John M. V. Blanshard. „Sulphite and oxidative—reductive depolymerization reactions“. Food Chemistry 60, Nr. 2 (Oktober 1997): 143–47. http://dx.doi.org/10.1016/s0308-8146(95)00253-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Donohoe, Timothy J., Karl W. Ace, Paul M. Guyo, Madeleine Helliwell und Jeffrey McKenna. „Reductive aldol reactions on aromatic heterocycles“. Tetrahedron Letters 41, Nr. 7 (Februar 2000): 989–93. http://dx.doi.org/10.1016/s0040-4039(99)02224-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Hawkins, Bill C., Paul A. Keller und Stephen G. Pyne. „Reductive ring opening reactions of diphenyldihydrofullerenylpyrroles“. Tetrahedron Letters 48, Nr. 42 (Oktober 2007): 7533–36. http://dx.doi.org/10.1016/j.tetlet.2007.08.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Panfilov, A. V., Yu D. Markovich, I. P. Ivashev, A. A. Zhirov, A. F. Eleev, V. K. Kurochkin, A. T. Kirsanov und G. V. Nazarov. „Sodium borohydride in reductive amination reactions“. Pharmaceutical Chemistry Journal 34, Nr. 2 (Februar 2000): 76–78. http://dx.doi.org/10.1007/bf02524364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bochkarev, M. N., und L. V. Pankratov. „Principles of oxidative-reductive transmetallation reactions“. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 36, Nr. 8 (August 1987): 1717–22. http://dx.doi.org/10.1007/bf00960141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Cadoux, Cécile, und Ross D. Milton. „Recent Enzymatic Electrochemistry for Reductive Reactions“. ChemElectroChem 7, Nr. 9 (02.04.2020): 1974–86. http://dx.doi.org/10.1002/celc.202000282.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wu, Hongli, Shuo-Qing Zhang und Xin Hong. „Mechanisms of nickel-catalyzed reductive cross-coupling reactions“. Chemical Synthesis 3, Nr. 4 (2023): 39. http://dx.doi.org/10.20517/cs.2023.20.

Der volle Inhalt der Quelle
Annotation:
Nickel-catalyzed reductive cross-coupling (RCC) reactions using two carbon electrophiles as coupling partners provide one of the most reliable and straightforward protocols for facile construction of valuable C-C bonds in the realm of organic chemistry. In recent years, significant progress has been made in the methodological developments and mechanistic studies of these reactions. This review summarizes four widely accepted mechanisms for RCC reactions that have been proposed by experiments or density functional theory calculations. The major difference between these four types of mechanisms lies in the oxidation state of the active catalyst, the change in the valence of nickel during the catalytic cycle, the involvement of carbon radicals, and the form in which the radicals are present. Herein, we focus on covering representative advancements in experimental and theoretical mechanistic studies, aiming to offer vital mechanistic insights into key intermediates, reaction rates, the activation modes of electrophiles, rate- or selectivity-determining steps, and the origin of the cross-selectivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhou, You-Yun, und Christopher Uyeda. „Catalytic reductive [4 + 1]-cycloadditions of vinylidenes and dienes“. Science 363, Nr. 6429 (21.02.2019): 857–62. http://dx.doi.org/10.1126/science.aau0364.

Der volle Inhalt der Quelle
Annotation:
Cycloaddition reactions provide direct and convergent routes to cycloalkanes, making them valuable targets for the development of synthetic methods. Whereas six-membered rings are readily accessible from Diels-Alder reactions, cycloadditions that generate five-membered rings are comparatively limited in scope. Here, we report that dinickel complexes catalyze [4 + 1]-cycloaddition reactions of 1,3-dienes. The C1partner is a vinylidene equivalent generated from the reductive activation of a 1,1-dichloroalkene in the presence of stoichiometric zinc. Intermolecular and intramolecular variants of the reaction are described, and high levels of asymmetric induction are achieved in the intramolecular cycloadditions using aC2-symmetric chiral ligand that stabilizes a metal-metal bond.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Wang, Yuling, und Qinghua Ren. „DFT Study of the Mechanisms of Transition-Metal-Catalyzed Reductive Coupling Reactions“. Current Organic Chemistry 24, Nr. 12 (22.09.2020): 1367–83. http://dx.doi.org/10.2174/1385272824999200608135840.

Der volle Inhalt der Quelle
Annotation:
The mechanism studies of transition-metal-catalyzed reductive coupling reactions investigated using Density Functional Theory calculations in the recent ten years have been reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the methodology used in these computational mechanism studies. The mechanisms of the transition- metal-catalyzed reductive coupling reactions normally include three main steps: oxidative addition; transmetalation; and reductive elimination or four main steps: the first oxidative addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting step is most likely the final reductive elimination step in the whole mechanism. Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values. We hope that this review will stimulate more and more experimental and computational combinations and the computational chemistry will significantly contribute to the development of future organic synthesis reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Valdés, Carlos, Miguel Paraja und Manuel Plaza. „Transition-Metal-Free Reactions Between Boronic Acids and N-Sulfonylhydrazones or Diazo Compounds: Reductive Coupling Processes and Beyond“. Synlett 28, Nr. 18 (22.08.2017): 2373–89. http://dx.doi.org/10.1055/s-0036-1590868.

Der volle Inhalt der Quelle
Annotation:
The metal-free reaction between diazo compounds and boronic acids has been established in recent years as a powerful C(sp3)–C bond-forming reaction. This account covers the recent advances in this area. First, the various synthetic applications of reactions with N-sulfonylhydrazones as a convenient source of diazo compounds is discussed. These transformations can be regarded as reductive couplings of carbonyl compounds. Also covered is the incorporation of other mild sources of diazo compounds in these reactions: diazotization of amines and oxidation of hydrazones. Finally, the development of sequential and cascade processes is presented.1 Introduction2 Early Work: Reactions Between Alkylboranes and Diazo Compounds or N-Sulfonylhydrazones2.1 Reactions Between Alkylboranes and Diazo Compounds2.2 Reactions Between Alkylboranes and N-Sulfonylhydrazones3 Reactions of N-Sulfonylhydrazones and Diazo Compounds with Aryl and Alkylboronic Acids3.1 Reactions of Arylboroxines with Diazo Compounds3.2 Reductive Couplings of N-Sulfonylhydrazones with Aryl- and Alkylboronic Acids3.3 Three-Component Reactions Between α-Halotosylhydrazones, Boronic Acids and Indoles4 Reactions of N-Tosylhydrazones with Alkenylboronic Acids5 Synthesis of Allenes by Reactions with Alkynyl N-Nosylhydrazones6 Reactions with Diazo Compounds Generated by Diazotization of Primary Amines7 Reactions with Diazo Compounds Generated by Oxidation of ­Hydrazones8 Reactions with Trimethylsilyldiazomethane9 Cascade Cyclization Reactions with γ- and δ-Cyano-N-tosylhydrazones10 Summary and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Shu, Xing-Zhong, Xiaobo Pang und Xuejing Peng. „Reductive Cross-Coupling of Vinyl Electrophiles“. Synthesis 52, Nr. 24 (11.08.2020): 3751–63. http://dx.doi.org/10.1055/s-0040-1707342.

Der volle Inhalt der Quelle
Annotation:
The synthesis of alkenes (olefins) is a central subject in the synthetic community. The transition-metal-catalyzed reductive cross-coupling of vinyl electrophiles has emerged as a promising tool to produce alkenes with improved flexibility, structural complexity, and functionality tolerance. In this review, we summarized the progress in this field with respect to cross-electrophile couplings and reductive Heck reactions using vinyl electrophiles.1 Introduction2 Cross-Electrophile Coupling of Vinyl Electrophiles3 Reductive Heck Reaction of Vinyl Electrophiles4 Summary and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Rietveld, Patrick, L. David Arscott, Alan Berry, Nigel S. Scrutton, Mahendra P. Deonarain, Richard N. Perham und Charles H. Williams. „Reductive and Oxidative Half-Reactions of Glutathione Reductase from Escherichia coli“. Biochemistry 33, Nr. 46 (November 1994): 13888–95. http://dx.doi.org/10.1021/bi00250a043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mitsudome, Takato. „Air-Stable and Highly Active Transition Metal Phosphide Catalysts for Reductive Molecular Transformations“. Catalysts 14, Nr. 3 (12.03.2024): 193. http://dx.doi.org/10.3390/catal14030193.

Der volle Inhalt der Quelle
Annotation:
This review introduces transition metal phosphide nanoparticle catalysts as highly efficient and reusable heterogeneous catalysts for various reductive molecular transformations. These transformations include the hydrogenation of nitriles to primary amines, reductive amination of carbonyl compounds, and biomass conversion, specifically, the aqueous hydrogenation reaction of mono- and disaccharides to sugar alcohols. Unlike traditional air-unstable non-precious metal catalysts, these are stable in air, eliminating the need for strict anaerobic conditions or pre-reduction. Moreover, when combined with supports, metal phosphides exhibit significantly enhanced activity, demonstrating high activity, selectivity, and durability in these hydrogenation reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sarhan, Abd El-Wareth A. O. „[4 + 3]Cycloaddition Reactions: Synthesis of 9,10-Dimethoxy-9,10-propanoanthracen-12-ones“. Journal of Chemical Research 23, Nr. 1 (Januar 1999): 24–25. http://dx.doi.org/10.1177/174751989902300118.

Der volle Inhalt der Quelle
Annotation:
Cycloaddition of 9,10-dimethoxyanthracene (1) to tetrabromoacetone (2a) under a variety of conditions afforded isomers 3a,b; reductive debromination of 3a,b afforded 4, while reduction with NaBH4 gave alcohol 6 which on reductive debromination gave olefin 7; reaction of 1 with 2b gave isomers 8a,b.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Mikesell, Peter, Michael Schwaebe, Marcello DiMare, R. Daniel Little, Giuseppe Silvestri, André Tallec, Tatsuya Shono und H. Toftlund. „Electrochemical Reductive Coupling Reactions of Aliphatic Nitroalkenes.“ Acta Chemica Scandinavica 53 (1999): 792–99. http://dx.doi.org/10.3891/acta.chem.scand.53-0792.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Tortajada, Andreu, Marino Börjesson und Ruben Martin. „Nickel-Catalyzed Reductive Carboxylation and Amidation Reactions“. Accounts of Chemical Research 54, Nr. 20 (29.09.2021): 3941–52. http://dx.doi.org/10.1021/acs.accounts.1c00480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Nozawa-Kumada, Kanako, Shungo Ito, Koto Noguchi, Masanori Shigeno und Yoshinori Kondo. „Super electron donor-mediated reductive desulfurization reactions“. Chemical Communications 55, Nr. 86 (2019): 12968–71. http://dx.doi.org/10.1039/c9cc06775b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Poremba, Kelsey E., Sara E. Dibrell und Sarah E. Reisman. „Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions“. ACS Catalysis 10, Nr. 15 (24.06.2020): 8237–46. http://dx.doi.org/10.1021/acscatal.0c01842.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zhao, Gui-Ling, und Armando Córdova. „Direct organocatalytic asymmetric reductive Mannich-type reactions“. Tetrahedron Letters 47, Nr. 42 (Oktober 2006): 7417–21. http://dx.doi.org/10.1016/j.tetlet.2006.08.063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Klatte, Stephanie, Elisabeth Lorenz und Volker F. Wendisch. „Whole cell biotransformation for reductive amination reactions“. Bioengineered 5, Nr. 1 (05.12.2013): 56–62. http://dx.doi.org/10.4161/bioe.27151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Polidoro, Daniele, Daily Rodriguez-Padron, Alvise Perosa, Rafael Luque und Maurizio Selva. „Chitin-Derived Nanocatalysts for Reductive Amination Reactions“. Materials 16, Nr. 2 (06.01.2023): 575. http://dx.doi.org/10.3390/ma16020575.

Der volle Inhalt der Quelle
Annotation:
Chitin, the second most abundant biopolymer in the planet after cellulose, represents a renewable carbon and nitrogen source. A thrilling opportunity for the valorization of chitin is focused on the preparation of biomass-derived N-doped carbonaceous materials. In this contribution, chitin-derived N-doped carbons were successfully prepared and functionalized with palladium metal nanoparticles. The physicochemical properties of these nanocomposites were investigated following a multi-technique strategy and their catalytic activity in reductive amination reactions was explored. In particular, a biomass-derived platform molecule, namely furfural, was upgraded to valuable bi-cyclic compounds under continuous flow conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Anderson, James C., Alexander J. Blake, Paul J. Koovits und Gregory J. Stepney. „ChemInform Abstract: Diastereoselective Reductive Nitro-Mannich Reactions.“ ChemInform 43, Nr. 37 (16.08.2012): no. http://dx.doi.org/10.1002/chin.201237038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Knappke, Christiane E. I., Sabine Grupe, Dominik Gärtner, Martin Corpet, Corinne Gosmini und Axel Jacobi von Wangelin. „Reductive Cross-Coupling Reactions between Two Electrophiles“. Chemistry - A European Journal 20, Nr. 23 (13.05.2014): 6828–42. http://dx.doi.org/10.1002/chem.201402302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Baxter, R. M. „Reductive Dehalogenation of Environmental Contaminants: A Critical Review“. Water Quality Research Journal 24, Nr. 2 (01.05.1989): 299–322. http://dx.doi.org/10.2166/wqrj.1989.018.

Der volle Inhalt der Quelle
Annotation:
Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Chitnis, Saurabh S., Alasdair P. M. Robertson, Neil Burford, Jan J. Weigand und Roland Fischer. „Synthesis and reactivity of cyclo-tetra(stibinophosphonium) tetracations: redox and coordination chemistry of phosphine–antimony complexes“. Chemical Science 6, Nr. 4 (2015): 2559–74. http://dx.doi.org/10.1039/c4sc03939d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Rayabarapu, Dinesh Kumar, und Chien-Hong Cheng. „Novel cyclization and reductive coupling of bicyclic olefins with alkyl propiolates catalyzed by nickel complexes“. Pure and Applied Chemistry 74, Nr. 1 (01.01.2002): 69–75. http://dx.doi.org/10.1351/pac200274010069.

Der volle Inhalt der Quelle
Annotation:
In this article, new metal-mediated cyclization and reductive coupling reactions of bicyclic olefins with alkynes are described. Oxabicyclic alkenes undergo cyclization with alkyl propiolates at 80 C catalyzed by nickel complexes to give benzocoumarin derivatives in high yields. The reaction of bicyclic alkenes (oxa- and azacyclic alkenes) with alkyl propiolates at room temperature in the presence of the same nickel complex gave 1,2-dihydro-napthelene derivatives in good-to-excellent yields. This reductive coupling reaction proceeds under very mild conditions in complete regio- and stereoselective fashion. A mechanism to account for the coumarin formation and the reductive coupling is proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Boll, Matthias, und Georg Fuchs. „Unusual reactions involved in anaerobic metabolism of phenolic compounds“. Biological Chemistry 386, Nr. 10 (01.10.2005): 989–97. http://dx.doi.org/10.1515/bc.2005.115.

Der volle Inhalt der Quelle
Annotation:
AbstractAerobic bacteria use molecular oxygen as a common co-substrate for key enzymes of aromatic metabolism. In contrast, in anaerobes all oxygen-dependent reactions are replaced by a set of alternative enzymatic processes. The anaerobic degradation of phenol to a non-aromatic product involves enzymatic processes that are uniquely found in the aromatic metabolism of anaerobic bacteria: (i) ATP-dependent phenol carboxylation to 4-hydroxybenzoate via a phenylphosphate intermediate (biological Kolbe-Schmitt carboxylation); (ii) reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA; and (iii) ATP-dependent reductive dearomatization of the key intermediate benzoyl-CoA in a ‘Birch-like’ reduction mechanism. This review summarizes the results of recent mechanistic studies of the enzymes involved in these three key reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Vorbeck, Claudia, Hiltrud Lenke, Peter Fischer, Jim C. Spain und Hans-Joachim Knackmuss. „Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene“. Applied and Environmental Microbiology 64, Nr. 1 (01.01.1998): 246–52. http://dx.doi.org/10.1128/aem.64.1.246-252.1998.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizingRhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Bacon, Mark, und W. John Ingledew. „The reductive reactions ofThiobacillus ferrooxidanson sulphur and selenium“. FEMS Microbiology Letters 58, Nr. 2-3 (April 1989): 189–94. http://dx.doi.org/10.1111/j.1574-6968.1989.tb03042.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Chiu, Pauline, und Wing Chung. „Reductive Intramolecular Henry Reactions Induced by Stryker’s Reagent“. Synlett 2005, Nr. 01 (29.11.2004): 55–58. http://dx.doi.org/10.1055/s-2004-836044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Molander, Gary A., und Caryn Kenny. „Intramolecular reductive coupling reactions promoted by samarium diiodide“. Journal of the American Chemical Society 111, Nr. 21 (Oktober 1989): 8236–46. http://dx.doi.org/10.1021/ja00203a027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Studer, Armido, und Stephan Amrein. „Tin Hydride Substitutes in Reductive Radical Chain Reactions“. Synthesis 2002, Nr. 07 (2002): 835–49. http://dx.doi.org/10.1055/s-2002-28507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Donohoe, Timothy J., Karl W. Ace, Paul M. Guyo, Madeleine Helliwell und Jeffrey McKenna. „ChemInform Abstract: Reductive Aldol Reactions on Aromatic Heterocycles.“ ChemInform 31, Nr. 18 (08.06.2010): no. http://dx.doi.org/10.1002/chin.200018084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Fürstner, Alois. „Synthesis and Reductive Elimination Reactions of Aryl Thioglycosides“. Liebigs Annalen der Chemie 1993, Nr. 11 (12.11.1993): 1211–17. http://dx.doi.org/10.1002/jlac.1993199301196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Streuff, Jan. „Reductive Umpolung Reactions with Low-Valent Titanium Catalysts“. Chemical Record 14, Nr. 6 (19.09.2014): 1100–1113. http://dx.doi.org/10.1002/tcr.201402058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Czaplik, Waldemar M., Matthias Mayer und Axel Jacobi von Wangelin. „Iron-Catalyzed Reductive Aryl-Alkenyl Cross-Coupling Reactions“. ChemCatChem 3, Nr. 1 (23.09.2010): 135–38. http://dx.doi.org/10.1002/cctc.201000276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Back, Thomas G. „ChemInform Abstract: Free-Radical Reactions and Reductive Deselenations“. ChemInform 31, Nr. 32 (03.06.2010): no. http://dx.doi.org/10.1002/chin.200032234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Reichard, Holly A., Martin McLaughlin, Ming Z. Chen und Glenn C. Micalizio. „Regioselective Reductive Cross-Coupling Reactions of Unsymmetrical Alkynes“. European Journal of Organic Chemistry 2010, Nr. 3 (Januar 2010): 391–409. http://dx.doi.org/10.1002/ejoc.200901094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Boll, Matthias, Oliver Einsle, Ulrich Ermler, Peter M. H. Kroneck und G. Matthias Ullmann. „Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase“. Journal of Molecular Microbiology and Biotechnology 26, Nr. 1-3 (2016): 119–37. http://dx.doi.org/10.1159/000440805.

Der volle Inhalt der Quelle
Annotation:
In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis<i>-</i>pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg<sup>2+</sup> (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lin, Chia-Hsin, Bor-Cherng Hong und Gene-Hsiang Lee. „Asymmetric synthesis of functionalized pyrrolizidines by an organocatalytic and pot-economy strategy“. RSC Advances 6, Nr. 10 (2016): 8243–47. http://dx.doi.org/10.1039/c5ra25103f.

Der volle Inhalt der Quelle
Annotation:
An enantioselective synthesis of indolizidines was achieved with a one-step purification by sequential asymmetric Michael–oxidative esterification–Michael–reduction–reductive Mannich–amidation reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kisała, Joanna, Bogdan Stefan Vasile, Anton Ficai, Denisa Ficai, Renata Wojnarowska-Nowak und Tomasz Szreder. „Reductive Photodegradation of 4,4′-Isopropylidenebis(2,6-dibromophenol) on Fe3O4 Surface“. Materials 16, Nr. 12 (14.06.2023): 4380. http://dx.doi.org/10.3390/ma16124380.

Der volle Inhalt der Quelle
Annotation:
Background: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. Methods: In this paper, the degradation of 4,4′-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. Results: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. Conclusions: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Salem, Mohammed A., Moustafa A. Gouda und Ghada G. El-Bana. „Chemistry of 2-(Piperazin-1-yl) Quinoline-3-Carbaldehydes“. Mini-Reviews in Organic Chemistry 19, Nr. 4 (Juni 2022): 480–95. http://dx.doi.org/10.2174/1570193x18666211001124510.

Der volle Inhalt der Quelle
Annotation:
Abstract: This review described the preparation of 2- chloroquinoline-3-carbaldehyde derivatives 18 through Vilsmeier-Haack formylation of N-arylacetamides and the use of them as a key intermediate for the preparation of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. The synthesis of the 2- (piperazin-1-yl) quinolines derivatives was explained through the following chemical reactions: acylation, sulfonylation, Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot multicomponent reactions (MCRs), reductive amination, Grignard reaction and Kabachnik-Field’s reaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie