Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Recycling techniques“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Recycling techniques" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Recycling techniques"
FUJITA, TOYOHISA. „Recycling. Physical Separation Techniques. Magnetic Separation.“ Shigen-to-Sozai 113, Nr. 12 (1997): 916–19. http://dx.doi.org/10.2473/shigentosozai.113.916.
Der volle Inhalt der QuelleOWADA, SHUJI. „Recycling. Physical Separation Techniques. Electrical Separation.“ Shigen-to-Sozai 113, Nr. 12 (1997): 920–23. http://dx.doi.org/10.2473/shigentosozai.113.920.
Der volle Inhalt der QuelleSHIBATA, JUNJI. „Recycling. Extraction and Recovery Techniques. Cementation.“ Shigen-to-Sozai 113, Nr. 12 (1997): 948–51. http://dx.doi.org/10.2473/shigentosozai.113.948.
Der volle Inhalt der QuelleTSURUTA, Kazuhiro. „The Recycling Techniques of Kitakyushu Ecotown“. Journal of The Institute of Electrical Engineers of Japan 126, Nr. 3 (2006): 132–35. http://dx.doi.org/10.1541/ieejjournal.126.132.
Der volle Inhalt der QuelleWang, De Cai, Yu Mei Li und Qing Wang. „Discussion on Pavement Recycling Techniques in China“. Advanced Materials Research 415-417 (Dezember 2011): 1749–54. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1749.
Der volle Inhalt der QuelleSAKAMOTO, HIROSHI. „Recycling. Physical Separation Techniques. Crushing and Grinding.“ Shigen-to-Sozai 113, Nr. 12 (1997): 899–903. http://dx.doi.org/10.2473/shigentosozai.113.899.
Der volle Inhalt der QuelleTSUNEKAWA, MASAMI. „Recycling. Physical Separation Techniques. Sizing and Classification.“ Shigen-to-Sozai 113, Nr. 12 (1997): 904–7. http://dx.doi.org/10.2473/shigentosozai.113.904.
Der volle Inhalt der QuelleTANAKA, MIKIYA. „Recycling. Extraction and Recovery Techniques. Solvent Extraction.“ Shigen-to-Sozai 113, Nr. 12 (1997): 940–44. http://dx.doi.org/10.2473/shigentosozai.113.940.
Der volle Inhalt der QuelleUMETSU, YOSHIAKI. „Recycling. Extraction and Recovery Techniques. Electrolytic Processes.“ Shigen-to-Sozai 113, Nr. 12 (1997): 945–47. http://dx.doi.org/10.2473/shigentosozai.113.945.
Der volle Inhalt der QuelleTAKEDA, YOICHI. „Recycling. Extraction and Recovery Techniques. Pyrometallurgical Refining.“ Shigen-to-Sozai 113, Nr. 12 (1997): 952–57. http://dx.doi.org/10.2473/shigentosozai.113.952.
Der volle Inhalt der QuelleDissertationen zum Thema "Recycling techniques"
Carr, Arielle Katherine Grim. „Recycling Techniques for Sequences of Linear Systems and Eigenproblems“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104143.
Der volle Inhalt der QuelleDoctor of Philosophy
Problems in science and engineering often require the solution to many linear systems, or a sequence of systems, that model the behavior of physical phenomena. In order to construct highly accurate mathematical models to describe this behavior, the resulting matrices can be very large, and therefore the linear system can be very expensive to solve. To efficiently solve a sequence of large linear systems, we often use iterative methods, which can require preconditioning techniques to achieve fast convergence. The preconditioners themselves can be very expensive to compute. So, we propose a cheap update technique that approximately maps one matrix to another in the sequence for which we already have a good preconditioner. We then combine the preconditioner and the map and use the updated preconditioner for the current system. Sequences of eigenvalue problems also arise in many scientific applications, such as those modeling disk brake squeal in a motor vehicle. To accurately represent this physical system, large eigenvalue problems must be solved. The behavior of certain eigenvalues can reveal instability in the physical system but to identify these eigenvalues, we must solve a sequence of very large eigenproblems. The eigensolvers used to solve eigenproblems generally begin with a single vector, and instead, we propose starting the method with several vectors, or a subspace. This allows us to reduce the total number of iterations required by the eigensolver while still producing an accurate solution. We demonstrate good results for both of these approaches using sequences of linear systems and eigenvalue problems arising in several real-world applications. Finally, in many applications, sequences of matrices take the special form of the sum of the identity matrix, a very low-rank matrix, and a small-in-norm matrix. We examine the convergence behavior of the iterative method GMRES when solving such a sequence of matrices.
Cardozo, Luis, Miguel Mendoza, Manuel Silvera und Guillermo Lazo. „Structural contribution of the fine particles present in the mastic of aggregates used to make recycled bases with foamed asphalt and asphalt emulsion“. Institute of Electrical and Electronics Engineers Inc, 2020. http://hdl.handle.net/10757/656566.
Der volle Inhalt der QuelleThe use of foamed asphalt as a technique that incorporates recycled bases stabilized with RAP is known, because it achieves important structural contributions. However, the component of aggregates, belonging to the fine fraction (through the # 200 mesh) takes special importance. This article seeks to develop a comparative analysis between the stabilizations of recycled foamed asphalt bases and asphalt emulsion. The importance of this study lies in analyzing the structural contribution of the fines fraction when comparing both stabilizations. For the present investigation, 48 pits were examined, where the combined granulometry of the RAP plus the granular base was evaluated. Here it was possible to identify a minimal presence of fines even within the recommended spindle for foamed asphalt mixtures, evidencing a deficit in indirect traction strength (ITS). The results obtained show, that a dry stability of 484.7 kg is achieved, and a conserved strength of 45% in the foamed asphalt. While in the asphalt emulsion a dry stability of 1862.1 kg and a conserved resistance of 70% is achieved. This demonstrates the impact on the structural behavior that have the fines fraction in stabilizations with foamed asphalt.
Koermer, Scott Carl. „The Application of Mineral Processing Techniques to the Scrap Recycling Industry“. Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/63994.
Der volle Inhalt der QuelleMaster of Science
Ferraro, Nathaniel Klug. „Economic Analysis of Recapturing and Recycling Irrigation Techniques on Horticulture Nurseries“. Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/76656.
Der volle Inhalt der QuelleMaster of Science
Youhanan, Lena. „Environmental Assessment of Textile Material Recovery Techniques : Examining Textile Flows in Sweden“. Thesis, KTH, Industriell ekologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123770.
Der volle Inhalt der QuelleDen primära produktionen av textilier för med sig enorma miljömässiga påfrestningar. Omfattande mängder kemikalier och vatten samt icke-förnybara resurser används vid tillverkningen av bomull och polyester. Det är nödvändigt att vidta åtgärder för att minska dessa negativa effekter på miljön. Denna studie syftar till att undersöka fyra olika återvinningstekniker för textilt avfall med fokus på bomull och polyester. Förbränning med energiutvinning inkluderas som ett referensfall och återvinningsteknikerna jämförs med hjälp av utvalda miljöfaktorer. De återvinningstekniker som jämförs är Re:newcells metod för återvinning av bomull (och andra cellulosa material) till viskosfiber, kemisk polyesteråtervinning, återvinning av bomull till isoleringsmaterial för byggnader samt rötning av bomullstextilier för utvinning av biogas. Avfallsströmmarna i Sverige uppskattas med hjälp av litteraturstudier av framförallt genomförda plockanalyser. Alla faktorer jämförs med avseende på 1 ton blandat textilavfall från hushåll i Sverige och hur mycket av det som kan användas som potentiell råvara i återvinningsprocesserna. Vidare undersöks även de miljömässiga effekterna som uppstår vid transport av det textila avfallet till en sorteringsanläggning och till återvinnigsanläggningar. Tre potentiella placeringar av sorteringsanläggningen undersöks: Stockholm, Vänersborg och Wolfen, Tyskland. Studien fann att endast fibermaterialåtervinning har möjlighet att motverka de miljömässiga påfrestningarna från primärproduktionen även om de också innebär den största användningen av resurser såsom vatten och kemikalier. Rötning av bomull till biogas anses vara ett orealistiskt alternativ då metoden är ekonomiskt oförsvarbar och lite eller ingen energi egentligen utvinns när man inkluderar de nödvändiga transporterna. Vidare studier behövs för att uppskatta nyttan och kostnaderna för återvinning av bomull till isoleringsmaterial. De transporter som oundvikligt behövs vid återvinning pga. insamling, sortering och återvinning bör inte underskattas och kan i vissa fall förhindra att miljönyttan ökar. Resultaten i studien bör däremot användas kritiskt då tillförlitligheten i det data som har använts i vissa fall kan ifrågasättas. Detta beror på att många antaganden och uppskattningar har gjorts pga. brist på data av sekretesskäl. Mer forskning och undersökningar rekommenderas i form av standardiserade metoder för plockanalyser av textilt avfall. Användningen av analytiska och strategiska verktyg såsom LCA och EIA/SEA rekommenderas för att ta hänsyn till alla intressenter vad gäller end-of-life för textilt avfall. Fastän återvinning är en nödvändig del i arbetet att minska på de miljömässiga påfrestningarna som primärproduktion bidrar till är det ännu viktigare att arbeta med åtgärder för att minska avfallet. Återvinning kräver sin andel resurser i from av energi, vatten och kemikalier bland annat.
Camacho, Walker. „Analytical techniques for quality assessment of separated and commingled recycled polymer fractions“. Doctoral thesis, KTH, Polymer Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3326.
Der volle Inhalt der QuelleDifferent methods for quality assessment of separated andcommingled plastics from household and electronic waste havebeen developed. Especial attention has been given tospectroscopic methods since they are non-destructive andrequire little or no sample preparation at all.
A wide variety of low molecular weight compounds have beenidentified in recycled polyethylene (HDPE) and polypropylenefrom hard packaging waste by gas chromatography- massspectroscopy (GC-MS) after microwave assisted extraction (MAE).Low molecular weight substances such as alcohols, esters,ketones and fragrance and flavour compounds were detected inthe recycled resins. The major category of compounds identifiedin the virgin resins is conformed by aliphatic hydrocarbonssuch as alkanes and alkenes. It was found that theconcentration of aromatic hydrocarbons without functionalgroups, e.g. ethylbenzene and xylenes in recycled HDPE wasapprox. 5 times higher and equal to 120 and 35 ppb,respectively.
The potential of near infrared (NIR) and Fourier transformRaman (FT-Raman) spectroscopy in combination with multivariateanalysis as a rapid, non-destructive and accurate analyticalmethod has been studied and the feasibility of these methodsfor at/in line characterisation of several properties ofrecyclates has also been explored.
NIR in diffuse reflectance mode has been successfully usedfor quantification of antioxidants in polyethylene, thestandard error of prediction is almost comparable to the errorof wet methods, i.e., extraction plus liquid chromatography.The error of prediction of this method is 35 ppm for Irganox1010 and 68 ppm for Irgafos 168. The inaccuracy in thequantification of Irgafos 168 is due to the fact that thisantioxidant degrades during polymer processing.
NIR and Mid-infrared (Mid-IR) worked well for fastdetermination of molecular weight and crystallinity of therecycled HDPE and acceptable errors of prediction, comparableto that of the reference methods, i.e. size exclusionchromatography (SEC) and differential scanning calorimetry(DSC) have been obtained.
The present thesis also shows that NIR and Raman are goodcandidates for in/on line compositional analysis of mixedpolymer fractions from recycled plastic waste. Diffusereflectance NIR allows a rapid and reliable measurement ofpellets and requires no previous sample preparation. Thecomposition of binary blends can be determined with highaccuracy. The PP content in the PP/HDPE blends was predictedwith a RMSEP equal to 0.46 %w in the 0-15 %wt region and theRMSEP for PP in the PP/ABS blends was 0.3 %wt.
The thermal and thermoxidative stability of recycled PP,HDPE and a 20/80 PP/HDPE blend subjected to multiple extrusionhave been studied by DSC, thermal analysis (TGA) andchemiluminiscence (CL). A decrease in Toxand OIT was observed after each extrusion step.The drop in OIT was sharper after the first two extrusions. TheOIT values produced by DSC and CL were in good agreement.However, CL provided more information about the oxidationprocess taking place in the blends.
The moisture content in recycled polyamide 6,6 was readilydetermined by NIR in transmission mode and it could bepredicted with a RMSEP = 0.05 %wt. The accuracy of the methodappeared to be as good as that of the more time consumingthermal methods such as TGA, DSC and loss on dry (LOD), whichwere used as reference methods. The influence of differentamounts of water on the viscoelastic properties of nylon hasbeen investigated.
Keywords:Recycling, HDPE, PP, blends, nylon 6,6, ABS,water content, MAE, GC-MS, NIR, FT-Raman, chemiluminiscence,low molecular weight compounds, antioxidant content,crystallinity, molecular weight, thermal stability,characterisation methods, analysis of polymers, blends.
Vilaplana, Francisco. „Modelling the degradation processes in high-impact polystyrene during the first use and subsequent recycling“. Licentiate thesis, Stockholm : Institutionen för fiber- och polymerteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4407.
Der volle Inhalt der QuelleBARNALA, PUKHRAJ K. „Optimization of Operating Parameters of a Material Recovery Facility using Lean Six Sigma Techniques“. University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321575835.
Der volle Inhalt der QuelleKobeissi, Amal. „Contribution à la mise en oeuvre du système d'évaluation des produits techniques en fin de vie“. Grenoble INPG, 2001. http://www.theses.fr/2001INPG0044.
Der volle Inhalt der QuelleBarthès, Marie-Lise. „Régénération d’ABS et de PC issus de DEEE sous forme d’alliages de polymères techniques ou de nanocomposites“. Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14007/document.
Der volle Inhalt der QuelleWEEE constitute a huge waste volume in which ABS is the major component. So, we focused on polymers from a real deposit (casing of computers); such a deposit contains ABS, PC, PS, ABS-PC. In a first step, recycling of aged ABS was studied. The decrease in the C=C content induces an impact strength drop. Nevertheless, ABS proved to be recyclable given that optimized processing conditions are found. The role of flame retardants was shown to be crucial on the recyclability. Separating polymers with or without flame retardants is the key point of the ABS recycling. However, recycled aged ABS do not recover the impact strength of neat virgin ABS. Then, ABS/PC blends were elaborated in order to obtain a material with an impact strength at least equivalent to the neat ABS. The use of ABS/PC blends for this recycling facilitates the sorting and the utilization of most of WEEE polymers. We first made ABS/PC blends from virgin polymers to have optimal processability and composition. Performing Charpy impact strength tests and morphological studies allowed to evaluate the influence of recycling process parameters (temperature and screw extrusion) and material properties (rate and viscosity of PC and ABS flame retardants). Experimental results indicate that the impact strength of the ABS/PC blends is higher when the morphology is fibrillar or co-continuous. We obtained ABS virgin FR/PC virgin blends (70/30) with an impact strength greater than the neat ABS. But, with equal composition, this result was not reached for the blends. So to achieve reliable blends rich in recycled ABS, compatibilisation is necessary. Recycled ABS/PC blends compatibilised with PP-g-MA is more resilient than the ABS. However, the compatibilising agents have a limited efficiency when they are used in the presence of flame retardants or subjected to a high residence time. Finally, nanoclays were attemptively used as both FR and compatibiliser. Tough they proved uneffective in the very first experiments carried out (the choice of clay need to be optimized)
Bücher zum Thema "Recycling techniques"
L, Dalmijn Wijnand, und Dutch National Reuse of Waste Research Programme., Hrsg. Handbook of recycling techniques. The Hague: Nijkerk Consultancy, 1998.
Den vollen Inhalt der Quelle findenDutch National Research Programme for the Recycling of Waste Substances., Hrsg. Handbook of recycling techniques. The Hague: Nijkerk Consultancy, 1994.
Den vollen Inhalt der Quelle findenNijkerk, Alfred A. Handbook of recycling techniques. The Hague: Nijkerk Cosultancy, 1996.
Den vollen Inhalt der Quelle findenIndustrial pollution control: Issues and techniques. 2. Aufl. New York: Van Nostrand Reinhold, 1992.
Den vollen Inhalt der Quelle findenReclaimed textiles: Techniques for paper, stitch, plastic and mixed media. London: Batsford, 2014.
Den vollen Inhalt der Quelle findenller-Hagedorn, Matthias Mu. Feedstock recycling of plastics: Selected papers presented at the Third International Symposium on Feedstock Recycling of Plastics & Other Innovative Plastics Recycling Techniques, Karlsruhe, Germany, September 25 - 29, 2005. Karlsruhe: Univ.-Verl. Karlsruhe, 2005.
Den vollen Inhalt der Quelle findenLogsdon, Gene. Gene Logsdon's moneysaving secrets: A treasury of salvaging, bargaining, recycling, and scavenging techniques. Emmaus, Pa: Rodale Press, 1986.
Den vollen Inhalt der Quelle findenBill, Milne, Hrsg. Making & decorating your own paper: Innovative techniques & original projects. New York: Sterling Pub. Co., 1994.
Den vollen Inhalt der Quelle findenMorselli, Luciano, Fabrizio Passarini und Ivano Vassura. Waste recovery: Strategies, techniques and applications in Europe. Milano: F. Angeli, 2009.
Den vollen Inhalt der Quelle findenBonham, N. Response techniques for the cleanup of sinking hazardous materials. Ottawa, Ont., Canada: Environment Canada, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Recycling techniques"
Hanko, G., C. Lochbichler, W. Riederer und G. Macher. „Techniques for Recycling of Magnesium Scrap“. In Magnesium, 988–94. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch153.
Der volle Inhalt der QuelleChandran, Nithin, Anjaly Sivadas, E. V. Anuja, Deepa K. Baby und Ragin Ramdas. „XLPE: Crosslinking Techniques and Recycling Process“. In Crosslinkable Polyethylene, 167–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0514-7_7.
Der volle Inhalt der QuelleNing, Chao, Carol Sze Ki Lin, David Chi Wai Hui und Gordon McKay. „Waste Printed Circuit Board (PCB) Recycling Techniques“. In Topics in Current Chemistry Collections, 21–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-90653-9_2.
Der volle Inhalt der QuelleBevis, M. J. „Non-Conventional Processing Techniques for Polymer Recycling“. In Frontiers in the Science and Technology of Polymer Recycling, 355–70. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1626-0_16.
Der volle Inhalt der QuelleShah, Naseer Ali, Raja Muhammad Waqas Anjum und Yasir Rasheed. „Techniques Used for Recycling E-waste Worldwide“. In Soil Biology, 187–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26615-8_13.
Der volle Inhalt der QuelleKrause, Horst. „Recycling and Disposal Techniques for Energetic Materials“. In Demilitarisation of Munitions, 73–80. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5604-2_6.
Der volle Inhalt der QuelleDahlin, Cheryl L., David N. Nilsen, David C. Dahlin, Alton H. Hunt und W. Keith Collins. „Mineral Processing Techniques for Recycling Investment-Casting Shell“. In Ceramic Transactions Series, 31–41. 735 Ceramic Place, Westerville, Ohio 43081: The American Ceramic Society, 2012. http://dx.doi.org/10.1002/9781118371435.ch4.
Der volle Inhalt der QuelleOhyabu, N., Y. Nakamura, Y. Nakahara, A. Livshits, V. Alimov, A. Busnyuk, N. Notkin, A. Samartsev und A. Doroshin. „Active Control of Hydrogen Recycling by the Permeation and Absorption Techniques“. In Hydrogen Recycling at Plasma Facing Materials, 25–34. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4331-8_4.
Der volle Inhalt der QuelleToettcher, Jared E., Joshua F. Apgar, Anya R. Castillo, Bruce Tidor und Jacob White. „Recycling Circuit Simulation Techniques for Mass-Action Biochemical Kinetics“. In Simulation and Verification of Electronic and Biological Systems, 115–36. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0149-6_6.
Der volle Inhalt der QuelleSoniya, M., und G. Muthuraman. „Removal of Organic Pollutants from Industrial Wastewaters Treated by Membrane Techniques“. In Water Conservation, Recycling and Reuse: Issues and Challenges, 171–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3179-4_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Recycling techniques"
Janani, T., J. S. Sudarsan und K. Prasanna. „Grey water recycling with corn cob as an adsorbent“. In THE 11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112366.
Der volle Inhalt der QuelleChae, Juhui, Hoon Lee, Jaein Kim und Inkyu Lee. „Self energy recycling techniques for MIMO wireless communication systems“. In ICC 2017 - 2017 IEEE International Conference on Communications. IEEE, 2017. http://dx.doi.org/10.1109/icc.2017.7996584.
Der volle Inhalt der QuelleBonifazi, G., und P. Massacci. „Imaging techniques for process optimization and control in glass recycling“. In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296). IEEE, 1999. http://dx.doi.org/10.1109/ipmm.1999.792528.
Der volle Inhalt der QuelleMaslennikova, I., V. Kovalev, O. Eronko und T. Grishchenko. „Environmentally safe techniques in the recycling of mercury-containing materials“. In ENERGY QUEST 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/eq140531.
Der volle Inhalt der QuelleJenkins, Kim J., und Mike Yu. „Cold-Recycling Techniques Using Bitumen Stabilization: Where Is This Technology Going?“ In GeoHunan International Conference 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41043(350)26.
Der volle Inhalt der QuelleMorozov, G. A., O. G. Morozov, R. R. Samigullin und A. R. Nasibullin. „Application of microwave technologies for increase of efficiency of polymeric materials recycling“. In 2011 VIII International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2011. http://dx.doi.org/10.1109/icatt.2011.6170771.
Der volle Inhalt der QuelleJones, S. „Machine vision techniques for ink particle analysis within the paper recycling process“. In Fifth International Conference on Image Processing and its Applications. IEE, 1995. http://dx.doi.org/10.1049/cp:19950746.
Der volle Inhalt der QuelleDraghici, Sebastian-Mihai, Maria-Iuliana Dascalu und Victor-Florin Constantin. „GAMIFIED LEARNING PLATFORM FOR INCREASING RECYCLING AWARENESS BASED ON MACHINE LEARNING TECHNIQUES“. In 15th International Technology, Education and Development Conference. IATED, 2021. http://dx.doi.org/10.21125/inted.2021.1599.
Der volle Inhalt der QuelleLee, Jung-Ho. „Life Extension of GT HGP Components by Recycling“. In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0184.
Der volle Inhalt der QuelleDutt, Devraj. „Life cycle analysis and recycling techniques of batteries used in renewable energy applications“. In 2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE). IEEE, 2013. http://dx.doi.org/10.1109/smartmile.2013.6708187.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Recycling techniques"
Thompson, Marshall, und Ramez Hajj. Flexible Pavement Recycling Techniques: A Summary of Activities. Illinois Center for Transportation, Juli 2021. http://dx.doi.org/10.36501/0197-9191/21-022.
Der volle Inhalt der QuelleAl-Qadi, Imad, Hasan Ozer, Mouna Krami Senhaji, Qingwen Zhou, Rebekah Yang, Seunggu Kang, Marshall Thompson et al. A Life-Cycle Methodology for Energy Use by In-Place Pavement Recycling Techniques. Illinois Center for Transportation, Oktober 2020. http://dx.doi.org/10.36501/0197-9191/20-018.
Der volle Inhalt der QuelleCarruth, William D. Evaluation of In-Place Asphalt Recycling for Airfield Applications. Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41142.
Der volle Inhalt der QuelleKoyanaka, Shigeki, Hitoshi Ohya und Shigehisa Endoh. Study on New grinding Technique to Simplify the Recycling Process of Scrap Electronics~Improvement of Selective Grinding Effect by Real-Time Control of the Grinding Conditions. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0187.
Der volle Inhalt der Quelle