Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Reconfigurable logic gates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reconfigurable logic gates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Reconfigurable logic gates"
Vlădescu, Elena, und Daniela Dragoman. „Reconfigurable Plasmonic Logic Gates“. Plasmonics 13, Nr. 6 (20.03.2018): 2189–95. http://dx.doi.org/10.1007/s11468-018-0737-z.
Der volle Inhalt der QuelleLuo, Shijiang, Min Song, Xin Li, Yue Zhang, Jeongmin Hong, Xiaofei Yang, Xuecheng Zou, Nuo Xu und Long You. „Reconfigurable Skyrmion Logic Gates“. Nano Letters 18, Nr. 2 (23.01.2018): 1180–84. http://dx.doi.org/10.1021/acs.nanolett.7b04722.
Der volle Inhalt der QuelleDíaz-Díaz, Irwin, und Eric Campos. „Toward a Voltage Reconfigurable Logic Gate“. Memorias del Congreso Nacional de Control Automático 6, Nr. 1 (27.10.2023): 503–6. http://dx.doi.org/10.58571/cnca.amca.2023.107.
Der volle Inhalt der QuelleQi, Mingxuan, Peijun Shi, Xiaokang Zhang, Shuang Cui, Yuan Liu, Shihua Zhou und Qiang Zhang. „Reconfigurable DNA triplex structure for pH responsive logic gates“. RSC Advances 13, Nr. 15 (2023): 9864–70. http://dx.doi.org/10.1039/d3ra00536d.
Der volle Inhalt der QuelleMedina‐Santiago, A., Mario Alfredo Reyes‐Barranca, Ignacio Algredo‐Badillo, Alfonso Martinez Cruz, Kelsey Alejandra Ramírez Gutiérrez und Adrián Eleazar Cortés‐Barrón. „Reconfigurable arithmetic logic unit designed with threshold logic gates“. IET Circuits, Devices & Systems 13, Nr. 1 (24.05.2018): 21–30. http://dx.doi.org/10.1049/iet-cds.2018.0046.
Der volle Inhalt der QuelleZou, Jianping, Kang Zhang, Weifan Cai, Tupei Chen, Arokia Nathan und Qing Zhang. „Optical-reconfigurable carbon nanotube and indium-tin-oxide complementary thin-film transistor logic gates“. Nanoscale 10, Nr. 27 (2018): 13122–29. http://dx.doi.org/10.1039/c8nr01358f.
Der volle Inhalt der QuelleRothenbuhler, Adrian, Thanh Tran, Elisa Smith, Vishal Saxena und Kristy Campbell. „Reconfigurable Threshold Logic Gates using Memristive Devices“. Journal of Low Power Electronics and Applications 3, Nr. 2 (24.05.2013): 174–93. http://dx.doi.org/10.3390/jlpea3020174.
Der volle Inhalt der QuelleRaitza, Michael, Steffen Marcker, Jens Trommer, Andre Heinzig, Sascha Kluppelholz, Christel Baier und Akash Kumar. „Quantitative Characterization of Reconfigurable Transistor Logic Gates“. IEEE Access 8 (2020): 112598–614. http://dx.doi.org/10.1109/access.2020.3001352.
Der volle Inhalt der QuelleYang, Liu, Wendi Li, Ying Tao, Kaifeng Dong, Fang Jin und Huihui Li. „Reconfigurable and reusable skyrmion logic gates with circular track“. AIP Advances 13, Nr. 2 (01.02.2023): 025227. http://dx.doi.org/10.1063/9.0000402.
Der volle Inhalt der QuelleZhang, Yuqing, Zheng Peng, Zhicheng Wang, Yilu Wu, Yuqi Hu, Jiagui Wu und Junbo Yang. „Non-Volatile Reconfigurable Compact Photonic Logic Gates Based on Phase-Change Materials“. Nanomaterials 13, Nr. 8 (15.04.2023): 1375. http://dx.doi.org/10.3390/nano13081375.
Der volle Inhalt der QuelleDissertationen zum Thema "Reconfigurable logic gates"
Ting, Darwin Ta-Yueh. „Reconfigurable Threshold Logic Gates Implemented in Nanoscale Double-Gate MOSFETs“. Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1219672300.
Der volle Inhalt der QuelleZaghloul, Yasser A. „Polarization based digital optical representation, gates, and processor“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43675.
Der volle Inhalt der QuelleDell'Ova, Florian. „Étude de la photoluminescence non linéaire dans des microcavités plasmoniques d’or“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK038.
Der volle Inhalt der QuelleThis thesis work is devoted to the detailed study of nonlinear photoluminescence emitted by gold modal plasmonic microcavities. Even today, the origin of this secondary light emission is debated, and numerous research attempts to identify the physical mechanisms involved. Our results unambiguously demonstrate the predominant role of the thermal dynamics of the hot electrons bath, generated by the absorption of femtosecond laser pulses, in the nonlinear emission process. Furthermore, our work shows that this secondary emission of light is intrinsically linked to the rich plasmonic landscape offered by this type of structures. We therefore propose several methods based on electrical and optical controls to redistribute the generation of nonlinear photoluminescence within the plasmonic cavity. Finally, these results allowed us to develop an all-optical reconfigurable logic gate capable of performing simple arithmetic and logic operations
Han, Yi. „Development of nonlinear reconfigurable control of reconfigurable plants using the FPGA technology“. Thesis, [S.l. : s.n.], 2008. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1011&context=td_cput.
Der volle Inhalt der QuelleMilliord, Corey. „Dynamic Voting Schemes to Enhance Evolutionary Repair in Reconfigurable Logic Devices“. Honors in the Major Thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/780.
Der volle Inhalt der QuelleBachelors
Engineering and Computer Science
Computer Engineering
Sedaghat, Maman Reza. „Fault emulation reconfigurable hardware based fault simulation using logic emulation systems with optimized mapping /“. [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=95853893X.
Der volle Inhalt der QuelleSchlottmann, Craig Richard. „Analog signal processing on a reconfigurable platform“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29623.
Der volle Inhalt der QuelleCommittee Chair: Hasler, Paul; Committee Member: Anderson, David; Committee Member: Ghovanloo, Maysam. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Parris, Matthew. „OPTIMIZING DYNAMIC LOGIC REALIZATIONS FOR PARTIAL RECONFIGURATION OF FIELD PROGRAMMABLE GATE ARRAYS“. Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4128.
Der volle Inhalt der QuelleM.S.Cp.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Engineering MSCpE
Al-aqeeli, Abulqadir. „Reconfigurable wavelet-based architecture for pattern recognition applications using a field programmable gate array“. Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1177008904.
Der volle Inhalt der QuelleVaradharajan, Swetha. „Digital and Analog Applications of Double Gate Mosfets“. Ohio University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1132759182.
Der volle Inhalt der QuelleBücher zum Thema "Reconfigurable logic gates"
C, Dorf Richard, Hrsg. Field-programmable gate arrays: Reconfigurable logic for rapid prototyping and implementation of digital systems. New York: Wiley, 1995.
Den vollen Inhalt der Quelle findenInternational Workshop on Field-Programmable Logic and Applications (10th 2000 Villach, Austria). Field-programmable logic and applications: The roadmap to reconfigurable computing : 10th international conference, FPL 2000, Villach, Austria, August 27-30, 2000 : proceedings. Berlin: Springer, 2000.
Den vollen Inhalt der Quelle findenInternational Workshop on Field-Programmable Logic and Applications (10th 2000 Villach, Austria). Field programmable logic and applications: The roadmap to reconfigurable computing : 10th international conference, FPL 2000, Villach, Austria, August 27-31, 2000 : proceedings. New York: Springer, 2000.
Den vollen Inhalt der Quelle findenInternational Conference on Field-Programmable Logic and Applications (12th 2002 Montpellier, France). Field-programmable logic and applications: Reconfigurable computing id going mainstream :12th International Conference, FPL 2002, Montpellier, France, September 2-4, 2002 : proceedings. Berlin: Springer, 2002.
Den vollen Inhalt der Quelle findenJohn, Schewel, und Society of Photo-optical Instrumentation Engineers., Hrsg. High-speed computing, digital signal processing, and filtering using reconfigurable logic: 20-21 November 1996, Boston, Massachusetts. Bellingham, Wash., USA: SPIE, 1996.
Den vollen Inhalt der Quelle findenJohn, Schewel, und Society of Photo-optical Instrumentation Engineers., Hrsg. Field programmable gate arrays (FPGAs) for fast board development and reconfigurable computing: 25-26 October, 1995, Philadelphia, Pennsylvania. Bellingham, Wash: SPIE, 1995.
Den vollen Inhalt der Quelle findenIEEE International Conference on Reconfigurable Computing (3rd 2006 San Luis Potosí, Mexico). Proceedings of the 2006 IEEE International Conference on Reconfigurable Computing and FPGA's: ReConFig 2006 : 20-22 September 2006, San Luis Potosi, Mexico. Piscataway, NJ: IEEE, 2006.
Den vollen Inhalt der Quelle findenGaillardon, Pierre-Emmanuel. Reconfigurable Logic: Architecture, Tools, and Applications. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenGaillardon, Pierre-Emmanuel. Reconfigurable Logic: Architecture, Tools, and Applications. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenGaillardon, Pierre-Emmanuel. Reconfigurable Logic: Architecture, Tools, and Applications. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Reconfigurable logic gates"
Watanabe, Minoru, und Fuminori Kobayashi. „A High-Density Optically Reconfigurable Gate Array Using Dynamic Method“. In Field Programmable Logic and Application, 261–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30117-2_28.
Der volle Inhalt der QuelleO’Connor, Ian, Ilham Hassoune und David Navarro. „Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs“. In IFIP Advances in Information and Communication Technology, 97–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12267-5_6.
Der volle Inhalt der QuelleCapmany, José, und Daniel Pérez. „Field Programmable Photonic Gate Arrays“. In Programmable Integrated Photonics, 301–30. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198844402.003.0009.
Der volle Inhalt der QuelleVéstias, Mário Pereira. „Field-Programmable Gate Array“. In Encyclopedia of Information Science and Technology, Fifth Edition, 257–70. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3479-3.ch020.
Der volle Inhalt der QuelleBen Salem, Ahmed Karim, Hedi Abdelkrim und Slim Ben Saoud. „Flexible Implementation of Industrial Real-Time Servo Drive System“. In Reconfigurable Embedded Control Systems, 476–508. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-086-0.ch018.
Der volle Inhalt der QuelleHarb, Naim, Smail Niar und Mazen A. R. Saghir. „Dynamically Reconfigurable Embedded Architectures for Safe Transportation Systems“. In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 347–71. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-6194-3.ch014.
Der volle Inhalt der QuelleMukhopadhyay, Sumitra, und Soumyadip Das. „A System on Chip Development of Customizable GA Architecture for Real Parameter Optimization Problem“. In Handbook of Research on Natural Computing for Optimization Problems, 66–102. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0058-2.ch004.
Der volle Inhalt der QuelleCalore, Enrico, und Sebastiano Fabio Schifano. „Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs“. In Parallel Computing: Technology Trends. IOS Press, 2020. http://dx.doi.org/10.3233/apc200100.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Reconfigurable logic gates"
Sui, Bing-cai, Ya-qing Chi, Hai-liang Zhou, Zuo-cheng Xing und Liang Fang. „Reconfigurable single-electron transistor logic gates“. In 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT). IEEE, 2008. http://dx.doi.org/10.1109/icsict.2008.4734593.
Der volle Inhalt der QuelleGoddard, Lynford L., Jeffrey S. Kallman und Tiziana C. Bond. „Rapidly reconfigurable all-optical universal logic gates“. In Optics East 2006, herausgegeben von Joachim Piprek und Jian Jim Wang. SPIE, 2006. http://dx.doi.org/10.1117/12.686169.
Der volle Inhalt der QuelleThanh Tran, Adrian Rothenbuhler, Elisa H. Barney Smith, Vishal Saxena und Kristy A. Campbell. „Reconfigurable Threshold Logic Gates using memristive devices“. In 2012 IEEE Subthreshold Microelectronics Conference (SubVT). IEEE, 2012. http://dx.doi.org/10.1109/subvt.2012.6404301.
Der volle Inhalt der QuelleKuttappa, Ragh, Lunal Khuon, Bahram Nabet und Baris Taskin. „Reconfigurable threshold logic gates using optoelectronic capacitors“. In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017. http://dx.doi.org/10.23919/date.2017.7927060.
Der volle Inhalt der QuelleDonghyeok Bae, Jaehong Park, Maengkyu Kim, Yongsik Jeong und Kyounghoon Yang. „RTD-based reconfigurable logic gates for programmable logic array applications“. In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528573.
Der volle Inhalt der QuelleDery, Hanan, Hui Wu, Berkehan Ciftcioglu, Michael Huang, Yang Song, Roland K. Kawakami, Jing Shi et al. „Reconfigurable nanoelectronics using graphene based spintronic logic gates“. In SPIE NanoScience + Engineering, herausgegeben von Henri-Jean M. Drouhin, Jean-Eric Wegrowe und Manijeh Razeghi. SPIE, 2011. http://dx.doi.org/10.1117/12.890318.
Der volle Inhalt der QuellePapandroulidakis, G., A. Khiat, A. Serb, S. Stathopoulos, L. Michalas und T. Prodromakis. „Metal Oxide-enabled Reconfigurable Memristive Threshold Logic Gates“. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351192.
Der volle Inhalt der QuelleJohnson, Mark, Jindong Song, Jinki Hong und Joonyeon Chang. „Magnetic field controlled reconfigurable logic gates with integrated nanomagnets“. In SPIE NanoScience + Engineering, herausgegeben von Henri-Jean Drouhin, Jean-Eric Wegrowe und Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2024409.
Der volle Inhalt der QuelleZhu, Haotong, Guihai Yu, Zheng Zhou, Xiaoxin Xie, Haozhang Yang, Peng Huang, Xiaoyan Liu und Jinfeng Kang. „Reconfigurable Optoelectronic Logic Gates Based on Complementary FDSOI-Based Phototransistor“. In 2024 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2024. http://dx.doi.org/10.7567/ssdm.2024.n-7-04.
Der volle Inhalt der QuelleSu, Tung-Yu. „P9 A Design Flow of Combined Logic Circuits with Reconfigurable Electro-optical Logic Gates“. In 2023 IEEE Silicon Photonics Conference (SiPhotonics). IEEE, 2023. http://dx.doi.org/10.1109/siphotonics55903.2023.10141939.
Der volle Inhalt der Quelle