Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Received signal power (RSS)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Received signal power (RSS)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Received signal power (RSS)"
Xu, Yihuai, Xin Hu, Yimao Sun, Yanbing Yang, Lei Zhang, Xiong Deng und Liangyin Chen. „High-Accuracy Height-Independent 3D VLP Based on Received Signal Strength Ratio“. Sensors 22, Nr. 19 (21.09.2022): 7165. http://dx.doi.org/10.3390/s22197165.
Der volle Inhalt der QuelleRaes, Willem, Nicolas Knudde, Jorik De Bruycker, Tom Dhaene und Nobby Stevens. „Experimental Evaluation of Machine Learning Methods for Robust Received Signal Strength-Based Visible Light Positioning“. Sensors 20, Nr. 21 (27.10.2020): 6109. http://dx.doi.org/10.3390/s20216109.
Der volle Inhalt der QuelleVeselý, Jiří, Petr Hubáček und Jana Olivová. „The Power Gain Difference Method Analysis“. Sensors 20, Nr. 11 (26.05.2020): 3018. http://dx.doi.org/10.3390/s20113018.
Der volle Inhalt der QuelleMartínez-Ciro, Roger Alexander, Francisco Eugenio López-Giraldo, José Martín Luna-Rivera und Atziry Magaly Ramírez-Aguilera. „An Indoor Visible Light Positioning System for Multi-Cell Networks“. Photonics 9, Nr. 3 (01.03.2022): 146. http://dx.doi.org/10.3390/photonics9030146.
Der volle Inhalt der QuelleAhmad, A., P. Claudio, A. Alizadeh Naeini und G. Sohn. „WI-FI RSS FINGERPRINTING FOR INDOOR LOCALIZATION USING AUGMENTED REALITY“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-4-2020 (03.08.2020): 57–64. http://dx.doi.org/10.5194/isprs-annals-v-4-2020-57-2020.
Der volle Inhalt der QuelleMuttair, Karrar Shakir, Mahmood Farhan Mosleh und Oras Ahmed Shareef. „Optimal transmitter location using multi-scale algorithm based on real measurement for outdoor communication“. IAES International Journal of Artificial Intelligence (IJ-AI) 11, Nr. 4 (01.12.2022): 1384. http://dx.doi.org/10.11591/ijai.v11.i4.pp1384-1394.
Der volle Inhalt der QuelleSergi, Simone, Fabrizio Pancaldi und Giorgio M. Vitetta. „Cluster-Based Ranging for Accurate Localization in Wireless Sensor Networks“. International Journal of Navigation and Observation 2010 (29.07.2010): 1–11. http://dx.doi.org/10.1155/2010/460860.
Der volle Inhalt der QuelleRzymowski, Mateusz, Krzysztof Nyka und Lukasz Kulas. „Direction of Arrival Estimation Based on Received Signal Strength Using Two-Row Electronically Steerable Parasitic Array Radiator Antenna“. Sensors 22, Nr. 5 (05.03.2022): 2034. http://dx.doi.org/10.3390/s22052034.
Der volle Inhalt der QuelleBi, Jingxue, Yunjia Wang, Xin Li, Hongxia Qi, Hongji Cao und Shenglei Xu. „An Adaptive Weighted KNN Positioning Method Based on Omnidirectional Fingerprint Database and Twice Affinity Propagation Clustering“. Sensors 18, Nr. 8 (01.08.2018): 2502. http://dx.doi.org/10.3390/s18082502.
Der volle Inhalt der QuellePerihanoglu, G. M., und H. Karaman. „SPATIAL PREDICTION OF RECEIVED SIGNAL STRENGTH FOR CELLULAR COMMUNICATION USING SUPPORT VECTOR MACHINE AND K-NEAREST NEIGHBOURS REGRESSION“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4/W9-2024 (08.03.2024): 291–97. http://dx.doi.org/10.5194/isprs-archives-xlviii-4-w9-2024-291-2024.
Der volle Inhalt der QuelleDissertationen zum Thema "Received signal power (RSS)"
Obeidat, Huthaifa A. N. „Investigation of Indoor Propagation Algorithms for Localization Purposes: Simulation and Measurements of Indoor Propagation Algorithms for Localization Applications using Wall Correction Factors, Local Mean Power Estimation and Ray Tracing Validations“. Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17385.
Der volle Inhalt der QuelleLiu, Siyang. „Efficient machine learning techniques for indoor localization in wireless communication systems“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST188.
Der volle Inhalt der QuelleWith rapid development of Internet of Things (IoT), the need of indoor location-based services such as asset management, navigation and tracking has also grown overtime. For indoor localization, navigation satellite systems such as GPS has limited usage since a direct line-of-sight to satellites is unavailable.Various solutions have been proposed for indoor localization such as trilateration, triangulation, dead reckoning, but their performance is limited by indoor channel conditions, such as shadowing and multipath fading. By exploiting the mapping between wireless signal feature measurements and positions, fingerprinting based methods have shown the potential to provide good localization performance with sufficient data. However, indoor localization still faces challenges like scalability, cost and complexity, privacy, etc.The focus of this thesis is to improve efficiency of indoor localization using machine learning techniques. We divide the localization process into two phases: offline radio mapping phase and online localization phase. During the offline phase, we introduce dataset analysis as an intermediate step between dataset creation and localization. We propose two numerical dataset quality indicators which can provide feedback to improve the radio map. Moreover, feature extraction and dataset processing using machine learning tools are integrated to improve efficiency by reducing the data size and computation complexity while improving localization performance. We propose a k-means based radio mapping method which can reduce the number of fingerprints by over % without losing useful information in the radio map or degrading localization performance. By exploring the hierarchical nature of large datasets, we propose a hierarchical feature extraction method which can further reduce localization complexity without compromising localization performance.For the online localization phase, we explore both traditional machine learning and deep learning. We first introduce several traditional machine learning methods and compare the localization performance on public datasets. We aim to improve localization performance of traditional methods.To cope with privacy and complexity issue, we introduce federated learning framework for indoor localization problem. In this framework, the clients share only their local models to the central server instead of the fingerprinting data. We first compare the performance with federated and centralized learning. Then, we further study the impact on different client numbers and local data size. To reduce communication cost during the training process, we evaluate different measures including client selection, gradient accumulation and model compression. An efficient compression method is proposed to compress local models which can reduce the uplink communication cost by 91.5% without compromising localization performance. At last, we consider a limit on uplink capacity and evaluate different compression strategies
Zegeye, Wondimu K., und Seifemichael B. Amsalu. „Minimum Euclidean Distance Algorithm for Indoor WiFi Received Signal Strength (RSS) Fingerprinting“. International Foundation for Telemetering, 2016. http://hdl.handle.net/10150/624190.
Der volle Inhalt der QuelleLi, Kejiong. „Indoor and outdoor location estimation in large areas using received signal strength“. Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8537.
Der volle Inhalt der QuelleGalbraith, Andrew. „Multilateration in Direct ShortRange Communications Networks : Utilising Basic Safety Messages and Received Signal Strength Ranging“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-97682.
Der volle Inhalt der QuelleTadokoro, Yukihiro, Hiraku Okada, Takaya Yamazato und Masaaki Katayama. „The Optimum Received Signal-Power Distribution for CDMA Packet Communication Systems Employing Successive Interference Cancellation“. IEEE, 2004. http://hdl.handle.net/2237/7763.
Der volle Inhalt der QuelleSundberg, Simon. „Localization of eNodeBs with a Large Set of Measurements from Train Routers“. Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-75456.
Der volle Inhalt der QuelleAhmed, Rana R. „Performance Modelling and Analysis of a New CoMP-based Handover Scheme for Next Generation Wireless Networks. Performance Modelling and Analysis for the Design and Development of a New Handover Scheme for Cell Edge Users in Next Generation Wireless Networks (NGWNs) Based on the Coordinated Multi-Point (CoMP) Joint Transmission (JT) Technique“. Thesis, University of Bradford, 2017. http://hdl.handle.net/10454/16785.
Der volle Inhalt der QuelleZang, Yuzhang. „UWB Motion and Micro-Gesture Detection -Applications to interactive electronic gaming and remote sensing“. Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1241.
Der volle Inhalt der QuelleFekih, Hassen Wiem. „A ubiquitous navigation service on smartphones“. Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI006.
Der volle Inhalt der QuellePedestrian navigation is a growing research field, which aims at developing services and applications that ensure the continuous positioning and navigation of people inside and outside covered areas (e.g. buildings). In this thesis, we propose a ubiquitous pedestrian navigation service based on user preferences and the most suitable efficient available positioning technology (e.g. WiFi, GNSS). Our main objective is to estimate continuously the position of a pedestrian carrying a smartphone equipped with a variety of technologies and sensors. First, we propose a novel positioning technology selection algorithm, called UCOSA for the complete ubiquitous navigation service in indoor and outdoor environments. UCOSA algorithm starts by inferring the need of a handover between the available positioning technologies on the overlapped coverage areas using fuzzy logic technique. If a handover process is required, a score is calculated for each captured Radio Frequency (RF) positioning technology. The score function consists of two parts: the first part represents the user preferences weights computed based on the Analytic Hierarchy Process (AHP). Whereas, the second part provides the user requirements (normalized values). UCOSA algorithm also integrates the Pedestrian Dead Reckoning (PDR) positioning technique through the navigation process to enhance the estimation of the smartphone's position. Second, we focus on the RSS fingerprinting positioning technique as it is the most widely used technique, which principle is to return the smartphone's position by comparing the real time recorded RSS values with the radiomap (i.e. a database of previous stored RSS values). Most of radiomap are organized in a grid, formed or Reference Point (RP): we propose a new design of radiomap which complements the grid with other RPs located at the center of gravity of each grid square. Third, we address the challenge of constructing a graph for a multi-floor building. We propose an algorithm that starts by creating the horizontal graph of each floor, separately, and then, adds vertical links between the different floors. Finally, we implement a novel algorithm, called SIONA that calculates and displays in a continuous manner the pathway between two distinct points being located indoor or outdoor. We conduct several real experiments inside the campus of the University of Passau in Germany to evaluate the performance of the proposed algorithms. They yield promising results in terms of continuity and accuracy (around 1.8 m indoor) of navigation service
Buchteile zum Thema "Received signal power (RSS)"
Arthi, R., Digvijay Singh Rawat, Abhiviraj Pillai, Yash Nair und S. S. Kausik. „Analysis of Indoor Localization Algorithm for WiFi Using Received Signal Strength“. In Advances in Power Systems and Energy Management, 423–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7504-4_40.
Der volle Inhalt der QuelleLei, Qianqian, Erhu Zhao, Min Lin und Yin Shi. „A Low Power Received Signal Strength Indicator for Short Distance Receiver“. In Lecture Notes in Electrical Engineering, 755–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01273-5_84.
Der volle Inhalt der QuelleHan, Mingzhi, und Yongyi Mao. „An Indoor Floor Location Method Based on Minimum Received Signal Strength (RSS) Dynamic Compensation and Multi Label Classification“. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 584–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20738-9_67.
Der volle Inhalt der QuelleSharma, Prachi, und Rajendra Kumar Dwivedi. „Detection of High Transmission Power Based Wormhole Attack Using Received Signal Strength Indicator (RSSI)“. In Communications in Computer and Information Science, 142–52. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2372-0_13.
Der volle Inhalt der QuelleElmokashfi, Ahmed, und Amund Kvalbein. „Chapter 5 Using Bluetooth for contact tracing“. In Simula SpringerBriefs on Computing, 81–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05466-2_5.
Der volle Inhalt der QuelleFuada, Syifaul, Mariella Särestöniemi, Marcos Katz, Simone Soderi und Matti Hämäläinen. „Experimental Study of In-Body Devices Misalignment Impact on Light-Based In-Body Communications“. In Communications in Computer and Information Science, 451–66. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59091-7_30.
Der volle Inhalt der QuellePatwari, Neal, und Piyush Agrawal. „Calibration and Measurement of Signal Strength for Sensor Localization“. In Localization Algorithms and Strategies for Wireless Sensor Networks, 122–45. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-396-8.ch005.
Der volle Inhalt der QuelleFang, Shih-Hau. „Robustness in Fingerprinting-Based Indoor Positioning Systems“. In Advances in Wireless Technologies and Telecommunication, 88–141. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3528-7.ch003.
Der volle Inhalt der QuelleBri, Diana, Jaime Lloret, Carlos Turro und Miguel Garcia. „Measuring Specific Absorption Rate by using Standard Communications Equipment“. In Advances in Healthcare Information Systems and Administration, 81–111. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0888-7.ch004.
Der volle Inhalt der QuelleShahra, Essa Qasem, Tarek Rahil Sheltami und Elhadi M. Shakshuki. „A Comparative Study of Range-Free and Range-Based Localization Protocols for Wireless Sensor Network“. In Sensor Technology, 1522–37. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2454-1.ch071.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Received signal power (RSS)"
Kompostiotis, Dimitris, Dimitris Vordonis und Vassilis Paliouras. „Received Power Maximization with Practical Phase-Dependent Amplitude Response in RIS-Aided OFDM Wireless Communications“. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10095408.
Der volle Inhalt der QuelleNilas, Phongchai, und Burin Baitoei. „Indoor Positioning System Based on Received Signal Strength: RSS“. In 3rd Annual International Conference on Advanced Topics in Artificial Intelligence. Global Science Technology Forum, 2012. http://dx.doi.org/10.5176/2251-2179_atai12.19.
Der volle Inhalt der QuelleChandra, K. Ramesh, M. V. Pathi Amudalapalli, N. V. Satyanarayana und Prudhvi Raj Budumuru. „Received Signal Strength (RSS) Based Channel Modelling, Localization and Tracking“. In 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). IEEE, 2021. http://dx.doi.org/10.1109/access51619.2021.9563331.
Der volle Inhalt der QuelleMailaender, Laurence. „Geolocation Bounds for Received Signal Strength (RSS) in Correlated Shadow Fading“. In 2011 IEEE Vehicular Technology Conference (VTC Fall). IEEE, 2011. http://dx.doi.org/10.1109/vetecf.2011.6092847.
Der volle Inhalt der QuelleMailaender, Laurence. „On the CRLB scaling law for Received Signal Strength (RSS) geolocation“. In 2011 45th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2011. http://dx.doi.org/10.1109/ciss.2011.5766210.
Der volle Inhalt der QuelleSuwadi, Mike Yuliana und Wirawan. „Polynomial Tope (PT) Key Group Generation Based Received Signal Strength (RSS)“. In 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2021. http://dx.doi.org/10.1109/isriti54043.2021.9702835.
Der volle Inhalt der QuellePajovic, Milutin, Philip Orlik, Toshiaki Koike-Akino, Kyeong Jin Kim, Hideto Aikawa und Toshinori Hori. „An Unsupervised Indoor Localization Method Based on Received Signal Strength (RSS) Measurements“. In GLOBECOM 2015 - 2015 IEEE Global Communications Conference. IEEE, 2014. http://dx.doi.org/10.1109/glocom.2014.7417708.
Der volle Inhalt der QuelleHashim, M. S. M., M. Azlan Shah Shahrol Aman, Loke Kah Wai, Teh Jia Yap und M. Juhairi Aziz Safar. „Indoor localization approach based on received signal strength (RSS) and trilateration technique“. In INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICoMEIA2016): Proceedings of the 2nd International Conference on Mathematics, Engineering and Industrial Applications 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4965148.
Der volle Inhalt der QuellePajovic, Milutin, Philip Orlik, Toshiaki Koike-Akino, Kyeong Jin Kim, Hideto Aikawa und Toshinori Hori. „An Unsupervised Indoor Localization Method Based on Received Signal Strength (RSS) Measurements“. In GLOBECOM 2015 - 2015 IEEE Global Communications Conference. IEEE, 2015. http://dx.doi.org/10.1109/glocom.2015.7417708.
Der volle Inhalt der QuelleWang, Sichun, Robert Inkol und Brad R. Jackson. „Relationship between the maximum likelihood emitter location estimators based on received signal strength (RSS) and received signal strength difference (RSSD)“. In 2012 26th Biennial Symposium on Communications (QBSC). IEEE, 2012. http://dx.doi.org/10.1109/qbsc.2012.6221353.
Der volle Inhalt der Quelle