Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Real-time Text Recognition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Real-time Text Recognition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Real-time Text Recognition"
Neumann, Lukas, und Jiri Matas. „Real-Time Lexicon-Free Scene Text Localization and Recognition“. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, Nr. 9 (01.09.2016): 1872–85. http://dx.doi.org/10.1109/tpami.2015.2496234.
Der volle Inhalt der QuelleMerino‐Gracia, Carlos, und Majid Mirmehdi. „Real‐time text tracking in natural scenes“. IET Computer Vision 8, Nr. 6 (Dezember 2014): 670–81. http://dx.doi.org/10.1049/iet-cvi.2013.0217.
Der volle Inhalt der QuelleThakur, Amrita, Pujan Budhathoki, Sarmila Upreti, Shirish Shrestha und Subarna Shakya. „Real Time Sign Language Recognition and Speech Generation“. Journal of Innovative Image Processing 2, Nr. 2 (03.06.2020): 65–76. http://dx.doi.org/10.36548/jiip.2020.2.001.
Der volle Inhalt der QuelleTaha, Mohamed, Noha Abd-ElKareem und Mazen Selim. „Real-Time Arabic Text-Reading for Visually Impaired People“. International Journal of Sociotechnology and Knowledge Development 13, Nr. 2 (April 2021): 168–85. http://dx.doi.org/10.4018/ijskd.2021040110.
Der volle Inhalt der QuelleMafla, Andrés, Rubèn Tito, Sounak Dey, Lluís Gómez, Marçal Rusiñol, Ernest Valveny und Dimosthenis Karatzas. „Real-time Lexicon-free Scene Text Retrieval“. Pattern Recognition 110 (Februar 2021): 107656. http://dx.doi.org/10.1016/j.patcog.2020.107656.
Der volle Inhalt der QuelleAl-Jumaily, Harith, Paloma Martínez, José L. Martínez-Fernández und Erik Van der Goot. „A real time Named Entity Recognition system for Arabic text mining“. Language Resources and Evaluation 46, Nr. 4 (01.05.2011): 543–63. http://dx.doi.org/10.1007/s10579-011-9146-z.
Der volle Inhalt der QuelleChoi, Yong-Sik, Jin-Gu Kang, Jong Wha J. Joo und Jin-Woo Jung. „Real-time Informatized caption enhancement based on speaker pronunciation time database“. Multimedia Tools and Applications 79, Nr. 47-48 (05.09.2020): 35667–88. http://dx.doi.org/10.1007/s11042-020-09590-2.
Der volle Inhalt der QuelleLu, Zhiyuan, Xiang Chen, Xu Zhang, Kay-Yu Tong und Ping Zhou. „Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition“. International Journal of Neural Systems 27, Nr. 05 (03.05.2017): 1750009. http://dx.doi.org/10.1142/s0129065717500095.
Der volle Inhalt der QuelleZhan, Ce, Wanqing Li, Philip Ogunbona und Farzad Safaei. „A Real-Time Facial Expression Recognition System for Online Games“. International Journal of Computer Games Technology 2008 (2008): 1–7. http://dx.doi.org/10.1155/2008/542918.
Der volle Inhalt der QuelleOliveira-Neto, Francisco Moraes, Lee D. Han und Myong K. Jeong. „Tracking Large Trucks in Real Time with License Plate Recognition and Text-Mining Techniques“. Transportation Research Record: Journal of the Transportation Research Board 2121, Nr. 1 (Januar 2009): 121–27. http://dx.doi.org/10.3141/2121-13.
Der volle Inhalt der QuelleDissertationen zum Thema "Real-time Text Recognition"
Gunaydin, Ali Gokay. „A Constraint Based Real-time License Plate Recognition System“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608195/index.pdf.
Der volle Inhalt der QuelleRaymondi, Luis Guillermo Antezana, Fabricio Eduardo Aguirre Guzman, Jimmy Armas-Aguirre und Paola Agonzalez. „Technological solution for the identification and reduction of stress level using wearables“. IEEE Computer Society, 2020. http://hdl.handle.net/10757/656578.
Der volle Inhalt der QuelleIn this article, a technological solution is proposed to identify and reduce the level of mental stress of a person through a wearable device. The proposal identifies a physiological variable: Heart rate, through the integration between a wearable and a mobile application through text recognition using the back camera of a smartphone. As part of the process, the technological solution shows a list of guidelines depending on the level of stress obtained in a given time. Once completed, it can be measured again in order to confirm the evolution of your stress level. This proposal allows the patient to keep his stress level under control in an effective and accessible way in real time. The proposal consists of four phases: 1. Collection of parameters through the wearable; 2. Data reception by the mobile application; 3. Data storage in a cloud environment and 4. Data collection and processing; this last phase is divided into 4 sub-phases: 4.1. Stress level analysis, 4.2. Recommendations to decrease the level obtained, 4.3. Comparison between measurements and 4.4. Measurement history per day. The proposal was validated in a workplace with people from 20 to 35 years old located in Lima, Peru. Preliminary results showed that 80% of patients managed to reduce their stress level with the proposed solution.
Revisión por pares
Hsieh, Yi-Chia, und 謝易家. „Real-Time Scene Text Detection and Recognition Using Extremal Region“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/f442q9.
Der volle Inhalt der Quelle國立臺灣科技大學
電機工程系
105
In the era of information explosion, multimedia has become an indispensable part of modern life. People use videos and images as digital diary and create enormous image text data consequently. Texts in image usually contain informative data, and therefore scene text recognition system would be a promising application. This thesis presents a fast scene text localization and recognition algorithm. We have develop a system that takes images as input and recognizes texts in the input images as output. The system consists of three parts: (1) Character candidate extraction, (2) Character classification and grouping, (3) Optical character recognition. In the first stage, extremal region(ER) is used as a candidate extractor. In order to reach high recall rate, we extract ER in multiple channels such as YCrCb and their inverted channels. A non-maximum suppression skill is introduced to eliminate overlapped candidates. In the second stage, we used mean local binary pattern as feature and train our classifier by AdaBoost. Text candidates are classified as one of strong text, weak text and non-text by a 2 stages classifier. The 2 stages classifier is intended to remain high recall and precision simultaneously. We then track the weak texts with strong texts as long as they have similar properties. Our next step was to group the candidates and transform them from character level to word level. Finally, our optical character recognition is done by using chain-code direction as feature and support vector machine as classifier. The experimental results show that our system is able to detect text in real-time and recognize text in nearly real-time. In addition, the system can detect text in different text fonts and text size, also tolerate moderate rotation, blurring and inconsistent lighting. Thus, the robustness of the system is validated.
Wong, Wei-Hong, und 翁瑋鴻. „A Mobile App for Real-time Text Recognition Based on WEB OCR Engine“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/21161004072031633863.
Der volle Inhalt der Quelle國立高雄第一科技大學
電腦與通訊工程研究所
101
As the smart phone and network links application and popularization, the user life also changed. In addition to telephone functions ,smart phone features like a small computer , many of the computer''s functions are also included, therefore, let many users for smart phones become dependent on more and more. Nowadays many mobile application design for user aspects in order to achieve "Software is the service" concept of the demand for life. In this thesis, the proposed mobile App is implemented in the smart phones based on the Android platform . First, the image of target text is captured by the camera function and then to upload the image to the Web OCR text real-time system replace the traditional form of keys to get the message with WI-FI/3G network function .Finally, the relative information of the image is sended back to the smart phone. Hoped that the technology of mobile applications in this research that can bring users more convenient life.
Oliveira, Neto Francisco Moraes. „Matching Vehicle License Plate Numbers Using License Plate Recognition and Text Mining Techniques“. 2010. http://trace.tennessee.edu/utk_graddiss/836.
Der volle Inhalt der QuelleCheng, I.-Hua, und 鄭宜樺. „Application of 3D Coordinate and Real-time Character Recognition for 5DoF Robotic Arm on Smartphone Automatic Test System“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/14563813731636057753.
Der volle Inhalt der Quelle國立臺灣海洋大學
通訊與導航工程學系
103
In this study three webcams are applied to a 5DoF robotic arm system that is applied to smartphone testing operation. One of the cameras is used to recognize words and numbers from the control panel by the use of Optical Character Recognize (OCR) and pattern matching process; it is an indication or command sending to human's brain for decision. In here the computer is the robot's brain that receives the command and executes decision. Another two cameras are used for catching the left and right images for 3D coordinates of object, and they are similar to human's eyes that can tell the position of object. We can easily see that the robotic arm system can catch the 3D coordinates of object and perform testing operations by the command from visual recognition. In the first step, we need to process the calibration procedure and get the relative internal/external parameters by two webcams. Then the values from image plan can be compared and transformed to 3D coordinates by the Q matrix. The coordinates can be translated to 4096 precision values in robotic arm system. In here we also use the inverse kinematics and translation between pixels and distance in the real world to check the relative position and further to execute the tested smartphone functions. In control panel, for receiving command, we use another webcam to catch the message from the monitor of the control PC by the OCR and pattern matching process. The words of command can be obtained after image translation from RGB to HSL color space. The message will then be sent to robotic arm. Movements of the robotic arm are based on fuzzy logic theory that can drive the robot arm to the relative point and position of object. The robot will execute operations that are requested. The feedback values of arm movement are applied to correct the position error in real time.
Buchteile zum Thema "Real-time Text Recognition"
Nouza, Jan. „A Large Czech Vocabulary Recognition System for Real-Time Applications“. In Text, Speech and Dialogue, 217–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45323-7_37.
Der volle Inhalt der QuelleNouza, Jan. „Strategies for Developing a Real-Time Continuous Speech Recognition System for Czech Language“. In Text, Speech and Dialogue, 189–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46154-x_26.
Der volle Inhalt der QuelleRajithKumar, B. K., H. S. Mohana, Divya A. Jamakhandi, K. V. Akshatha, Disha B. Hegde und Amisha Singh. „Real-Time Input Text Recognition System for the Aid of Visually Impaired“. In Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), 147–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00665-5_16.
Der volle Inhalt der QuelleYoshihashi, Ryota, Tomohiro Tanaka, Kenji Doi, Takumi Fujino und Naoaki Yamashita. „Context-Free TextSpotter for Real-Time and Mobile End-to-End Text Detection and Recognition“. In Document Analysis and Recognition – ICDAR 2021, 240–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86331-9_16.
Der volle Inhalt der QuelleKumar, Sandeep, Sanjana Mathew, Navya Anumula und K. Shravya Chandra. „Portable Camera-Based Assistive Device for Real-Time Text Recognition on Various Products and Speech Using Android for Blind People“. In Lecture Notes in Networks and Systems, 437–48. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3172-9_42.
Der volle Inhalt der QuelleRege, Priti P., und Shaheera Akhter. „Text Separation From Document Images“. In Machine Learning and Deep Learning in Real-Time Applications, 283–313. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-3095-5.ch013.
Der volle Inhalt der QuelleR, Kedar, Kaviraj A, Manish R, Niteesh B und Suthir S. „Authorized Vehicle Recognition System“. In Intelligent Systems and Computer Technology. IOS Press, 2020. http://dx.doi.org/10.3233/apc200190.
Der volle Inhalt der QuelleTarasconi, Francesco, Milad Botros, Matteo Caserio, Gianpiero Sportelli, Giuseppe Giacalone, Carlotta Uttini, Luca Vignati und Fabrizio Zanetta. „Natural Language Processing Applications in Case-Law Text Publishing“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2020. http://dx.doi.org/10.3233/faia200859.
Der volle Inhalt der QuelleSarma, Minerva, Anuskha Kumar, Aditi Joshi, Suraj Kumar Nayak und Biswajeet Champaty. „Development of a Text-to-Speech Scanner for Visually Impaired People“. In Advances in Medical Technologies and Clinical Practice, 218–38. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4969-7.ch010.
Der volle Inhalt der QuelleWest-Eberhard, Mary Jane. „Phenotypic Recombination Due to Learning“. In Developmental Plasticity and Evolution. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195122343.003.0024.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Real-time Text Recognition"
Xie, Dong, Arthur C. Depoian, Lorenzo E. Jaques, Colleen P. Bailey und Parthasarathy Guturu. „Novel technique for broadcast footage overlay text recognition“. In Real-Time Image Processing and Deep Learning 2021, herausgegeben von Nasser Kehtarnavaz und Matthias F. Carlsohn. SPIE, 2021. http://dx.doi.org/10.1117/12.2588177.
Der volle Inhalt der QuelleNeumann, L., und J. Matas. „Real-time scene text localization and recognition“. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6248097.
Der volle Inhalt der QuelleThomas, Philippe, Johannes Kirschnick, Leonhard Hennig, Renlong Ai, Sven Schmeier, Holmer Hemsen, Feiyu Xu und Hans Uszkoreit. „Streaming Text Analytics for Real-Time Event Recognition“. In RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. Incoma Ltd. Shoumen, Bulgaria, 2017. http://dx.doi.org/10.26615/978-954-452-049-6_096.
Der volle Inhalt der QuelleGomez, Llifs, und Dimosthenis Karatzas. „MSER-Based Real-Time Text Detection and Tracking“. In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.536.
Der volle Inhalt der QuelleYang, Haojin, Cheng Wang, Xiaoyin Che, Sheng Luo und Christoph Meinel. „An Improved System For Real-Time Scene Text Recognition“. In ICMR '15: International Conference on Multimedia Retrieval. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2671188.2749352.
Der volle Inhalt der QuelleLiu, Yi, Dongming Zhang, Yongdong Zhang und Shouxun Lin. „Real-Time Scene Text Detection Based on Stroke Model“. In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.537.
Der volle Inhalt der QuelleWu, Qingtian, Peng Chen und Yimin Zhou. „A Scalable System to Synthesize Data for Natural Scene Text Localization and Recognition“. In 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2019. http://dx.doi.org/10.1109/rcar47638.2019.9043965.
Der volle Inhalt der QuelleLi, Jiachen, Yuan Lin, Rongrong Liu, Chiu Man Ho und Humphrey Shi. „RSCA: Real-time Segmentation-based Context-Aware Scene Text Detection“. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2021. http://dx.doi.org/10.1109/cvprw53098.2021.00267.
Der volle Inhalt der QuelleLiu, Yuliang, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin und Liangwei Wang. „ABCNet: Real-Time Scene Text Spotting With Adaptive Bezier-Curve Network“. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.00983.
Der volle Inhalt der QuelleZhu, Ming, Huakang Li, Xiaoyu Sun und Zhuo Yang. „BLAC: A Named Entity Recognition Model Incorporating Part-of-Speech Attention in Irregular Short Text“. In 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2020. http://dx.doi.org/10.1109/rcar49640.2020.9303256.
Der volle Inhalt der Quelle