Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Real-time cell analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Real-time cell analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Real-time cell analysis"
Vogt, Nina. „Real-time behavioral analysis“. Nature Methods 18, Nr. 2 (Februar 2021): 123. http://dx.doi.org/10.1038/s41592-021-01072-z.
Der volle Inhalt der QuellePranada, Albert L., Silke Metz, Andreas Herrmann, Peter C. Heinrich und Gerhard Müller-Newen. „Real Time Analysis of STAT3 Nucleocytoplasmic Shuttling“. Journal of Biological Chemistry 279, Nr. 15 (29.12.2003): 15114–23. http://dx.doi.org/10.1074/jbc.m312530200.
Der volle Inhalt der QuelleJaiswal, Devina, Armin Tahmasbi Rad, Mu-Ping Nieh, Kevin P. Claffey und Kazunori Hoshino. „Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis“. Journal of Magnetism and Magnetic Materials 427 (April 2017): 7–13. http://dx.doi.org/10.1016/j.jmmm.2016.11.002.
Der volle Inhalt der QuelleFregin, Bob, Fabian Czerwinski, Doreen Biedenweg, Salvatore Girardo, Stefan Groß, Konstanze Aurich und Oliver Otto. „Dynamic Real-Time Deformability Cytometry - Time-Resolved Mechanical Single Cell Analysis at 100 Cells/s“. Biophysical Journal 118, Nr. 3 (Februar 2020): 605a. http://dx.doi.org/10.1016/j.bpj.2019.11.3267.
Der volle Inhalt der QuelleCerignoli, Fabio, Yama A. Abassi, Brandon J. Lamarche, Garret Guenther, David Santa Ana, Diana Guimet, Wen Zhang, Jing Zhang und Biao Xi. „In vitro immunotherapy potency assays using real-time cell analysis“. PLOS ONE 13, Nr. 3 (02.03.2018): e0193498. http://dx.doi.org/10.1371/journal.pone.0193498.
Der volle Inhalt der QuelleRappoport, J. Z. „Real-time analysis of clathrin-mediated endocytosis during cell migration“. Journal of Cell Science 116, Nr. 5 (15.01.2003): 847–55. http://dx.doi.org/10.1242/jcs.00289.
Der volle Inhalt der QuelleErsöz, M., S. Malkoç, EB Küçük, BS Bozkurt und SS Hakki. „Biocompatibility evaluation of orthodontic composite by real-time cell analysis“. Human & Experimental Toxicology 35, Nr. 8 (19.07.2016): 833–38. http://dx.doi.org/10.1177/0960327115607944.
Der volle Inhalt der QuelleSimons, Peter C., Sean M. Biggs, Anna Waller, Terry Foutz, Daniel F. Cimino, Qing Guo, Richard R. Neubig, Wei-Jen Tang, Eric R. Prossnitz und Larry A. Sklar. „Real-time Analysis of Ternary Complex on Particles“. Journal of Biological Chemistry 279, Nr. 14 (15.01.2004): 13514–21. http://dx.doi.org/10.1074/jbc.m310306200.
Der volle Inhalt der QuelleMazhar, Muhammad Waqar. „Molecular Analysis of Covid-19 Patient Real Time PCR and their Medicational Clinical Trials“. Virology & Immunology Journal 5, Nr. 3 (02.08.2021): 1–4. http://dx.doi.org/10.23880/vij-16000284.
Der volle Inhalt der QuelleAoyama, Tadayoshi, Amalka De Zoysa, Qingyi Gu, Takeshi Takaki und Idaku Ishii. „Vision-Based Real-Time Microflow-Rate Control System for Cell Analysis“. Journal of Robotics and Mechatronics 28, Nr. 6 (20.12.2016): 854–61. http://dx.doi.org/10.20965/jrm.2016.p0854.
Der volle Inhalt der QuelleDissertationen zum Thema "Real-time cell analysis"
Hong, Soonjin Barbee Kenneth A. „Quantitative analysis of cell-surface interactions and cell adhesion process in real-time /“. Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2840.
Der volle Inhalt der QuelleSchulz, Craig. „Microsequential injection systems for the real-time monitoring of glucose metabolism of live cells by enzymatic assay /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/8694.
Der volle Inhalt der QuelleMaiuri, Paolo. „Single-cell and real-time analysis of transcription rates from integrated HIV-1 provirus“. Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85935.
Der volle Inhalt der QuelleShoshi, Astrit [Verfasser]. „Magnetic lab-on-a-chip for cell analysis : magnetoresistive-based real-time monitoring of dynamic cell-environment interactions / Astrit Shoshi“. Bielefeld : Universitaetsbibliothek Bielefeld, 2013. http://d-nb.info/1036974502/34.
Der volle Inhalt der QuelleLi, Min. „Kinetic analysis of Human T-cell leukemia virus type 1 gene expression“. The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228156327.
Der volle Inhalt der QuelleZhou, Daming. „Modeling and Multi-Dimensional Analysis of a Proton Exchange Membrane Fuel Cell“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA011/document.
Der volle Inhalt der QuelleBefore mass commercialization of proton exchange membrane fuel cell, the research on the design of appropriate control strategies and auxiliaries need to be done for achieving proton exchange membrane fuel cell (PEMFC) optimal working modes. An accurate mathematical PEMFC model can be used to observe the internal variables and state of fuel cell during its operation, and could further greatly help the system control strategy development.A comprehensive multi-physical dynamic model for PEMFC is developed in chapter I. The proposed model covers multi-physical domains for electric, fluidic and thermal features. Particularly, the transient phenomena in both fluidic and thermal domain are simultaneously considered in the proposed model, such as the dynamic behaviors of fuel cell membrane water content and temperature. Therefore, this model can be used to analyze the coupling effects of dynamic variables among different physical domains.Based on the developed multi-physical PEMFC model, a full two-dimensional multi-physical model is further presented. The proposed model covers electrical and fluidic domains with an innovative 2-D modeling approach. In order to accurately describe the characteristics of reactant gas convection in the channels and diffusion through the gas diffusion layer, the gas pressure drop in the serpentine pipeline is comprehensively analyzed by fully taking the geometric form of flow field into consideration, such as the reactant gas pressure drop due to the pipeline sharp and U-bends. Based on the developed 2-D fluidic domain modeling results, spatial physical quantity distributions in electrical domain can be further obtained. Therefore, this 2-D PEMFC model can be use to study the influences of modeling parameters on the local multi-dimensional performance prediction. The simulation and experimental test are then performed to validate the proposed 2-D model with a commercial Ballard NEXA 1.2 kW PEMFC stack.In chapter II, analyses of dynamic phenomena step responses are conducted based on the developed multi-physical dynamic PEMFC model using the relative gain array (RGA) method for various control input variables, in order to quantitatively analyze the coupling effects in different physical domains, such as the interactions of membrane water content and temperature. Based on the calculated values of relative gain array, the proposed model can be considered as a fuel cell MIMO system, which could be divided into two independent control sub-systems by minimizing parameter coupling effects between each other. Due to the closely coupled parameters in the proposed first control sub-system, a decoupling control method is recommended to achieve optimized control results. The coupling analysis presented in this thesis can help engineers to design and optimize the fuel cell control strategies, especially for the water and thermal management in fuel cell systems
Czerwieniec, Gregg Allen. „Single cell analysis using bio-aerosol mass spectrometry : development and applications for the real-time detection of bio-warfare pathogens /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleAL, DOSSARY REEM. „Activation of human endogenous retrovirus K and cellular modifications in human melanoma cell lines: gene expression analysis“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1389.
Der volle Inhalt der QuelleBoussemaere, Luc. „Investigating off-axis digital holographic microscopy with a source of partial spatial coherence as a real-time sensor for cell cultures“. Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209086.
Der volle Inhalt der QuelleDoctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Pretorius, Ashley. „Functional analysis of the mouse RBBP6 gene using Interference RNA“. Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_4435_1264363734.
Der volle Inhalt der QuelleThe aim of this thesis was to investigate the cellular role of the mouse RBBP6 gene using the interference RNA (RNAi) gene targeting technology and also to understand the relevance of two promoters for the RBBP6 gene.
Bücher zum Thema "Real-time cell analysis"
SAHAIDAK, Mykhailo, Hrsg. STRATEGIC IMPERATIVES OF MODERN MANAGEMENT. Kyiv National Economic University named after Vadym Hetman, 2024. http://dx.doi.org/10.35668/978-966-926-500-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Real-time cell analysis"
Haim-Vilmovsky, Liora. „High-Throughput Single-Cell Real-Time Quantitative PCR Analysis“. In Methods in Molecular Biology, 177–83. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9240-9_11.
Der volle Inhalt der QuelleSklar, L. A., W. N. Swann, S. P. Fay und Z. G. Oades. „Real-Time Analysis of Macromolecular Assembly During Cell Activation“. In Biology of Cellular Transducing Signals, 1–10. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0559-0_1.
Der volle Inhalt der QuelleIsh-Shalom, Shahar, und Amnon Lichter. „Analysis of Fungal Gene Expression by Real Time Quantitative PCR“. In Molecular and Cell Biology Methods for Fungi, 103–14. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-611-5_7.
Der volle Inhalt der QuelleGoudar, Chetan, Richard Biener, Chun Zhang, James Michaels, James Piret und Konstantin Konstantinov. „Towards Industrial Application of Quasi Real-Time Metabolic Flux Analysis for Mammalian Cell Culture“. In Cell Culture Engineering, 99–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10_020.
Der volle Inhalt der QuelleEdvardsson, Louise, und Tor Olofsson. „Real-Time PCR Analysis for Blood Cell Lineage Specific Markers“. In DNA and RNA Profiling in Human Blood, 313–22. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-553-4_21.
Der volle Inhalt der QuelleOng, Seow Theng, und Navin Kumar Verma. „Live Cell Imaging and Analysis to Capture T-Cell Motility in Real-Time“. In Methods in Molecular Biology, 33–40. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9036-8_5.
Der volle Inhalt der QuelleJacobi, Angela, Philipp Rosendahl, Martin Kräter, Marta Urbanska, Maik Herbig und Jochen Guck. „Analysis of Biomechanical Properties of Hematopoietic Stem and Progenitor Cells Using Real-Time Fluorescence and Deformability Cytometry“. In Stem Cell Mobilization, 135–48. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9574-5_11.
Der volle Inhalt der QuelleBye, Alexander P., Zeki Ilkan, Amanda J. Unsworth und Chris I. Jones. „Immobilization of Nonactivated Unfixed Platelets for Real-Time Single-Cell Analysis“. In Methods in Molecular Biology, 1–11. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8585-2_1.
Der volle Inhalt der QuelleShulman, Ziv, und Ronen Alon. „Real-Time Analysis of Integrin-Dependent Transendothelial Migration and Integrin-Independent Interstitial Motility of Leukocytes“. In Integrin and Cell Adhesion Molecules, 31–45. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-166-6_3.
Der volle Inhalt der QuelleBrouwer, Ineke, Marit A. C. de Kort und Tineke L. Lenstra. „Measuring Transcription Dynamics of Individual Genes Inside Living Cells“. In Single Molecule Analysis, 235–65. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Real-time cell analysis"
Roper, Carissa J., Chu Ma und Susan C. Hagness. „Analysis of a TEM Cell Designed for Real-Time Observation of Pulsed Microwave-Induced Thermoelastic Tissue Expansion“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 2515–16. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686786.
Der volle Inhalt der QuelleWei, Yuanyuan, Syeda Aimen Abbasi, Meiai Lin, Liwei Tan, Shanhang Luo, Yuankai Ma, Shiyue Liu, Yi-Ping Ho, Ho-Pui Ho und Wu Yuan. „Efficient Single-Cell Analysis through a Cost-Effective Droplet Microfluidic System“. In CLEO: Applications and Technology, ATu3B.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.atu3b.7.
Der volle Inhalt der QuelleSun, Jiasong, Yefeng Shu und Chao Zuo. „Adaptive Optical Quantitative Phase Imaging of Living Cells Based on Fourier Ptychographic Microscopy“. In Adaptive Optics: Methods, Analysis and Applications, OW1F.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/aopt.2024.ow1f.3.
Der volle Inhalt der QuelleNoubir, Safouane, Yannick Bornat und Bertrand Le Gal. „Real-Time Analysis of Living Biological Cell Activity“. In 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE, 2018. http://dx.doi.org/10.1109/dasip.2018.8596862.
Der volle Inhalt der QuelleXu, Wenkui, Liguo Chen, Haibo Huang, Leilei Zhang, Xiangpeng Li, Yadi Li und Lining Sun. „Biomechanical analysis of yeast cell based a piezoresistive cantilever sensor“. In 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2016. http://dx.doi.org/10.1109/rcar.2016.7784058.
Der volle Inhalt der QuelleAoyama, Tadayoshi, Amalka De Zoysa, Qingyi Gu, Takeshi Takaki und Idaku Ishii. „Real-time flow-rate control system for cell analysis“. In the 2015 Conference. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2783449.2783499.
Der volle Inhalt der QuelleSchrimpf, J., M. Lind und G. Mathisen. „Real-time analysis of a multi-robot sewing cell“. In 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505666.
Der volle Inhalt der QuelleMota, Sakina Mohammed, Carl A. Gregory, Kristen C. Maitland, Maryellen L. Giger, Roland R. Kaunas, Robert E. Rogers, Andrew W. Haskell und Eoin P. McNeill. „Morphological cell image analysis for real-time monitoring of stem cell culture“. In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXVI, herausgegeben von Thomas G. Brown und Tony Wilson. SPIE, 2019. http://dx.doi.org/10.1117/12.2507469.
Der volle Inhalt der QuelleFregin, Bob, Doreen Biedenweg, Salvatore Girardo, Stefan Groß, Konstanze Aurich und Oliver Otto. „Dynamic real-time deformability cytometry: Time-resolved mechanical single cell analysis at 100 cells/s“. In High-Speed Biomedical Imaging and Spectroscopy VII, herausgegeben von Keisuke Goda und Kevin K. Tsia. SPIE, 2022. http://dx.doi.org/10.1117/12.2624175.
Der volle Inhalt der QuellePark, Jonghan, und Soonhoi Ha. „Performance Analysis of Parallel Execution of H.264 Encoder on the Cell Processor“. In 2007 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia. IEEE, 2007. http://dx.doi.org/10.1109/estmed.2007.4375797.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Real-time cell analysis"
Conery, Ian, Brittany Bruder, Connor Geis, Jessamin Straub, Nicholas Spore und Katherine Brodie. Applicability of CoastSnap, a crowd-sourced coastal monitoring approach for US Army Corps of Engineers district use. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47568.
Der volle Inhalt der QuelleHeifetz, Yael, und Michael Bender. Success and failure in insect fertilization and reproduction - the role of the female accessory glands. United States Department of Agriculture, Dezember 2006. http://dx.doi.org/10.32747/2006.7695586.bard.
Der volle Inhalt der QuelleDelwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz und Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, Februar 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Der volle Inhalt der QuelleWANG, MIN, Sheng Chen, Changqing Zhong, Tao Zhang, Yongxing Xu, Hongyuan Guo, Xiaoying Wang, Shuai Zhang, Yan Chen und Lianyong Li. Diagnosis using artificial intelligence based on the endocytoscopic observation of the gastrointestinal tumours: a systematic review and meta-analysis. InPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Februar 2023. http://dx.doi.org/10.37766/inplasy2023.2.0096.
Der volle Inhalt der QuelleMorrison, Dawn. The built environment of the US Air Force all-volunteer force : preliminary analysis of building trends. Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49360.
Der volle Inhalt der QuelleMorrison, Dawn. The built environment of the US Air Force all-volunteer force : preliminary analysis of building trends. Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49369.
Der volle Inhalt der Quelle