Zeitschriftenartikel zum Thema „Real-time acquisition“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Real-time acquisition.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Real-time acquisition" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Rusinkiewicz, Szymon, Olaf Hall-Holt und Marc Levoy. „Real-time 3D model acquisition“. ACM Transactions on Graphics 21, Nr. 3 (Juli 2002): 438–46. http://dx.doi.org/10.1145/566654.566600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wong, M., D. Zhang, W. K. Kong und G. Lu. „Real-time palmprint acquisition system design“. IEE Proceedings - Vision, Image, and Signal Processing 152, Nr. 5 (2005): 527. http://dx.doi.org/10.1049/ip-vis:20049040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Backus, P. R., J. C. Jordan und D. G. Harper. „Real time data acquisition in SETI“. Acta Astronautica 26, Nr. 3-4 (März 1992): 169–72. http://dx.doi.org/10.1016/0094-5765(92)90090-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Braunbeck, G., M. Kaindl, A. M. Waeber und F. Reinhard. „Decoherence mitigation by real-time noise acquisition“. Journal of Applied Physics 130, Nr. 5 (07.08.2021): 054302. http://dx.doi.org/10.1063/5.0048140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jaravine, Victor A., und Vladislav Yu Orekhov. „Targeted Acquisition for Real-Time NMR Spectroscopy“. Journal of the American Chemical Society 128, Nr. 41 (Oktober 2006): 13421–26. http://dx.doi.org/10.1021/ja062146p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Taylor, S., und R. Taylor. „Parallel processing and real-time data acquisition“. IEEE Transactions on Nuclear Science 37, Nr. 2 (April 1990): 355–60. http://dx.doi.org/10.1109/23.106644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Muratore, John, Troy Heindel, Terri Murphy, Arthur Rasmussen und Robert McFarland. „Real-time data acquisition at mission control“. Communications of the ACM 33, Nr. 12 (Dezember 1990): 18–31. http://dx.doi.org/10.1145/96267.96277.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Buono, S., I. Gaponenko, R. Jones, L. Mapelli, G. Mornacchi, D. Prigent, E. Sanchez-Corral et al. „Real-time UNIX in HEP data acquisition“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 352, Nr. 1-2 (Dezember 1994): 213–15. http://dx.doi.org/10.1016/0168-9002(94)91503-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rottmann, J., D. Kozono, R. Mak, A. Chen, F. L. Hacker und R. I. Berbeco. „Verification Real-Time Image Acquisition System (VERITAS)“. International Journal of Radiation Oncology*Biology*Physics 90, Nr. 1 (September 2014): S892—S893. http://dx.doi.org/10.1016/j.ijrobp.2014.05.2541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Singh, Baljeet, Nitin Kumar, Irshad Ahmed und Karun Yadav. „Real-Time Object Detection Using Deep Learning“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 5 (31.05.2022): 3159–60. http://dx.doi.org/10.22214/ijraset.2022.42820.

Der volle Inhalt der Quelle
Annotation:
Abstract: The computer vision field known as real-time acquisition is large, dynamic, and complex. Local image process refers to the acquisition of one object in an image, while Objects refers to the acquisition of multiple objects in an image. In digital photos and videos, this sees semantic class objects. Tracking features, video surveilance, pedestrian detection, census, self-driving cars, face recognition, sports tracking, and many other applications used to find real-time object. Convolution Neural Networks is an in-depth study tool for OpenCV (Opensource Computer Vision), a set of basic computer-assisted programming tasks. Computer visualization, in-depth study, and convolutional neural networks are some of the words used in this paper..
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Saputra, H., A. Suhandi, A. Setiawan, A. Permanasari und R. A. Putra. „Real-time data acquisition of dynamic moving objects“. Journal of Physics: Conference Series 1806, Nr. 1 (01.03.2021): 012046. http://dx.doi.org/10.1088/1742-6596/1806/1/012046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Tang, Guoliang, Zi Wang, Shijie Liu, Chunlai Li und Jianyu Wang. „Real-Time Hyperspectral Video Acquisition with Coded Slits“. Sensors 22, Nr. 3 (21.01.2022): 822. http://dx.doi.org/10.3390/s22030822.

Der volle Inhalt der Quelle
Annotation:
We propose a real-time hyperspectral video acquisition system that uses coded slits. Conventional imaging spectrometers usually have scanning mechanisms that reduce the temporal resolution or sacrifice the spatial resolution to acquire spectral information instantly. Recently, computational spectral imaging has been applied to realize high-speed or high-performance spectral imaging. However, the most current computational spectral imaging systems take a long time to reconstruct spectral data cubes from limited measurements, which limits real-time hyperspectral video acquisition. In this work, we propose a new computational spectral imaging system. We substitute the slit in a conventional scanning-based imaging spectrometer with coded slits, which can achieve the parallel acquisition of spectral data and thus an imaging speed that is several times higher. We also apply an electronically controlled translation stage to use different codes at each exposure level. The larger amount of data allows for fast reconstruction through matrix inversion. To solve the problem of a trade-off between imaging speed and image quality in high-speed spectral imaging, we analyze the noise in the system. The severe readout noise in our system is suppressed with S-matrix coding. Finally, we build a practical prototype that can acquire hyperspectral video with a high spatial resolution and a high signal-to-noise ratio at 5 Hz in real time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Reichardt, Thomas A., Michael S. Klassen, Galen B. King und Normand M. Laurendeau. „Real-time acquisition of laser-induced fluorescence decays“. Applied Optics 34, Nr. 6 (20.02.1995): 973. http://dx.doi.org/10.1364/ao.34.000973.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Koninckx, T. P., und L. Van Gool. „Real-time range acquisition by adaptive structured light“. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, Nr. 3 (März 2006): 432–45. http://dx.doi.org/10.1109/tpami.2006.62.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Abidin, Ahmad Faizal Zainal, Mohammad Huzaimy Jusoh, Elster James, Syed Abdul Mutalib Al Junid und Ahmad Ihsan Mohd Yassin. „Real-Time Remote Monitoring with Data Acquisition System“. IOP Conference Series: Materials Science and Engineering 99 (19.11.2015): 012011. http://dx.doi.org/10.1088/1757-899x/99/1/012011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Atmoko, R. A., R. Riantini und M. K. Hasin. „IoT real time data acquisition using MQTT protocol“. Journal of Physics: Conference Series 853 (Mai 2017): 012003. http://dx.doi.org/10.1088/1742-6596/853/1/012003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Denby, B., P. Gole, A. Sartori und G. Tecchiolli. „Real time data acquisition techniques in meteorological applications“. IEEE Transactions on Nuclear Science 45, Nr. 4 (1998): 1840–44. http://dx.doi.org/10.1109/23.710947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Cinque, Guglielmo. „Parameter setting in “instantaneous” and real-time acquisition“. Behavioral and Brain Sciences 12, Nr. 2 (Juni 1989): 336. http://dx.doi.org/10.1017/s0140525x00048913.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

van der Laan, Marten D. „Data acquisition for real-time process control systems“. Annual Review in Automatic Programming 18 (Januar 1994): 109–14. http://dx.doi.org/10.1016/0066-4138(94)90019-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Catipovic, Josko. „Real‐time data acquisition from mid‐ocean observatories“. Journal of the Acoustical Society of America 95, Nr. 5 (Mai 1994): 2808. http://dx.doi.org/10.1121/1.409729.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Islam, Sheikh Md Rabiul, Akram Hossain und Asif Abdullah. „Real-Time Acquisition and Classification of Electrocardiogram Signal“. Journal of Engineering Research and Sciences 1, Nr. 11 (November 2022): 8–15. http://dx.doi.org/10.55708/js0111002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

van der Laan, Marten D. „Data Acquisition for Real-Time Process Control Systems“. IFAC Proceedings Volumes 27, Nr. 6 (Juni 1994): 109–14. http://dx.doi.org/10.1016/s1474-6670(17)45975-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wang, Yi, Meng Zhang, Shuai Ji und Jingdong Wang. „Design of Multi-channel Real-time Signal Acquisition System“. Journal of Physics: Conference Series 2189, Nr. 1 (01.02.2022): 012007. http://dx.doi.org/10.1088/1742-6596/2189/1/012007.

Der volle Inhalt der Quelle
Annotation:
Abstract In order to improve the accuracy of the real-time signal acquisition, a real-time signal acquisition system based on high speed ADC and FPGA is proposed in this paper. AD9208 is used to realize high speed acquisition and DDC processing of original signal. FPGA 7V690T is used to realize digital channelization and fine FFT processing. This system can realize massive data storage and real-time signal display. The test results show that this system can effectively realize real-time signal acquisition and processing, and has strong anti-interference ability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Huang, Feng, und Jian Kai Zhao. „Design of Multi-Channel Data Acquisition System Based on PXI 6281“. Applied Mechanics and Materials 34-35 (Oktober 2010): 1739–41. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1739.

Der volle Inhalt der Quelle
Annotation:
The paper designed a multi-channel data acquisition system based on PXI 6281. It used DAQmx technology in LabVIEW for synchronous analog channel data acquisition. It realized multi-channel real-time data acquisition, processing, display and data auto-saving. Data acquisition system consists of three major modules: the pressure measurement module, the motor speed measurement modules and real-time temperature measurement module. It has advantage of short cycle of technological upgrading, development and low maintenance costs. It has some reference value for other data acquisitions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mehrdad, S., M. Satari, M. Safdary und P. Moallem. „TOWARD REAL TIME UAVS’ IMAGE MOSAICKING“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (06.06.2016): 941–46. http://dx.doi.org/10.5194/isprs-archives-xli-b1-941-2016.

Der volle Inhalt der Quelle
Annotation:
Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs’ data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs’ image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV’s sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Mehrdad, S., M. Satari, M. Safdary und P. Moallem. „TOWARD REAL TIME UAVS’ IMAGE MOSAICKING“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (06.06.2016): 941–46. http://dx.doi.org/10.5194/isprsarchives-xli-b1-941-2016.

Der volle Inhalt der Quelle
Annotation:
Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs’ data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs’ image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV’s sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chen, Yun Jun, Xiu Ming Jiang, Gong Yuan Yang und Yan Cai. „Design and Implementation of Real-Time Audio Transmission System“. Advanced Materials Research 433-440 (Januar 2012): 2887–91. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.2887.

Der volle Inhalt der Quelle
Annotation:
Continuous Multi-channel digital audio signals system not only guarantees the continuity of signal acquisition, but has the real-time control ability in the process of signal acquisition. This paper proposes the producer/consumer design pattern which can make program designing quicker, simpler and more efficient. Through the example of continuous sound signal acquisition, the designing idea for the Producer/consumer design pattern is described in details and the design process of this program on the Delphi platform is given. The result shows that the introduction of the producer/consumer design pattern in the use of program design which has serious request in real-time and continuous sound signal acquisition and playing can make the processes response faster and more efficient.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Gavalian, Gagik. „Real-time charged track reconstruction for CLAS12“. Journal of Instrumentation 19, Nr. 05 (01.05.2024): C05050. http://dx.doi.org/10.1088/1748-0221/19/05/c05050.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents the results of charged particle track reconstruction in CLAS12 using artificial intelligence. In our approach, we use machine learning algorithms to reconstruct tracks, including their momentum and direction, with high accuracy from raw hits of the CLAS12 drift chambers. The reconstruction is performed in real-time, with the rate of data acquisition, and allows for the identification of event topologies in real-time. This approach revolutionizes the Nuclear Physics experiments' data processing, allowing us to identify and categorize the experimental data on the fly, and will lead to a significant reduction in experiment data processing. It can also be used in streaming readout applications leading to more efficient data acquisition and post-processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Peppin, William A., und Walter F. Nicks. „Real-Time Analog and Digital Data Acquisition Through CUSP“. Seismological Research Letters 63, Nr. 2 (01.04.1992): 181–89. http://dx.doi.org/10.1785/gssrl.63.2.181.

Der volle Inhalt der Quelle
Annotation:
Abstract The University of Nevada Seismological Laboratory operates an array of 60 analog short-period and 10 three-component digital telemetered seismic stations, 90 data traces in all, in Nevada and eastern California. Formerly, the seismic data streams were recorded and processed on three separate computers running disparate software and writing incompatible data formats which made access to the digital data quite cumbersome. These systems were recently replaced by a single computer system, a MicroVAX II running VAX/VMS, together with Generic CUSP (Caltech -U.S.G.S. Seismic Processing System), a controlled software system from the U.S.G.S. in Menlo Park. Telemetered digital data are stored simultaneously in two ways, unique to this network. First, these digital data are brought asynchronously into the computer using a standard direct-memory access interface and recorded continuously on an Exabyte 8-mm helical-scan tapedrive. Second, the digital data are passed through a D to A converter and intermixed with the incoming analog data stream used for routine network processing. This analog data stream is then itself digitized and presented to the computer. In this way, calibrated digital waveforms are available in the routine data processing stream, now entirely comprised of digital waveforms, used to locate earthquakes. At the same time, this allows easy access to these data in research applications involving the processing of seismic waveforms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Xue, Ru, Zong Sheng Wu und Mei Yun Shao. „Real-Time Data Acquisition System for Remote Vital Sign“. Applied Mechanics and Materials 333-335 (Juli 2013): 442–46. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.442.

Der volle Inhalt der Quelle
Annotation:
A data acquisition system for remote vital sign is designed. The system detect humans vital signs through the body temperature, blood pressure and pulse sensors ,and transmit them to the microprocessor after processing, then the microprocessor send the data to remote monitoring center on receiving the instruction .The monitoring center analysis the data and decide what and how to do. The monitoring centers can response various change of data rapidly and implement real-time rescue guide according to different situations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Lu, Peter J., Peter A. Sims, Hidekazu Oki, James B. Macarthur und David A. Weitz. „Target-locking acquisition with real-time confocal (TARC) microscopy“. Optics Express 15, Nr. 14 (27.06.2007): 8702. http://dx.doi.org/10.1364/oe.15.008702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Mitéran, Johel, Jean-Philippe Zimmer, Michel Paindavoine und Julien Dubois. „Real-Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture“. EURASIP Journal on Image and Video Processing 2007 (2007): 1–8. http://dx.doi.org/10.1155/2007/81387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mitéran, Johel, Jean-Philippe Zimmer, Michel Paindavoine und Julien Dubois. „Real-Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture“. EURASIP Journal on Image and Video Processing 2007, Nr. 1 (2007): 081387. http://dx.doi.org/10.1186/1687-5281-2007-081387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

庞, 高峰. „Remote Real-Time Hyperspectral Video Acquisition Based on Zynq“. Instrumentation and Equipments 06, Nr. 01 (2018): 28–37. http://dx.doi.org/10.12677/iae.2018.61005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Gressel, Michael G., William A. Heitbrink, James D. McGlothlin und Thomas J. Fischbach. „Advantages of Real-Time Data Acquisition for Exposure Assessment“. Applied Industrial Hygiene 3, Nr. 11 (November 1988): 316–20. http://dx.doi.org/10.1080/08828032.1988.10389864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Bera, Priyanka, und Rajarshi Gupta. „Hybrid encoding algorithm for real time compressed electrocardiogram acquisition“. Measurement 91 (September 2016): 651–60. http://dx.doi.org/10.1016/j.measurement.2016.05.085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Bartolini, P., R. Eramo, A. Taschin, M. De Pas und R. Torre. „A real-time acquisition system for pump–probe spectroscopy“. Philosophical Magazine 87, Nr. 3-5 (21.01.2007): 731–40. http://dx.doi.org/10.1080/14786430600953780.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hu, Kun, Xu Wang, Yuan Yao, Xin Gao und Ge Jin. „Real-Time Data Acquisition for Single Photon Imaging Detector“. IEEE Transactions on Nuclear Science 63, Nr. 2 (April 2016): 1076–82. http://dx.doi.org/10.1109/tns.2016.2538281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Linkens, D. A., und H. O. Nyongesa. „Real-Time Acquisition of Fuzzy Rules Using Genetic Algorithms“. IFAC Proceedings Volumes 25, Nr. 10 (Juni 1992): 335–39. http://dx.doi.org/10.1016/s1474-6670(17)50843-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Linkens, D. A., und H. O. Nyongesa. „Real-time acquisition of fuzzy rules using genetic algorithms“. Annual Review in Automatic Programming 17 (Januar 1992): 335–39. http://dx.doi.org/10.1016/s0066-4138(09)91055-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Sigdel, Madhav, Marc L. Pusey und Ramazan S. Aygun. „Real-Time Protein Crystallization Image Acquisition and Classification System“. Crystal Growth & Design 13, Nr. 7 (05.06.2013): 2728–36. http://dx.doi.org/10.1021/cg3016029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Welch, J. Nerney, J. A. Johnson, R. Badr, M. R. Bax, S. K. S. So, T. M. Krummel und R. Shahidi. „Quantifiable real-time 3D ultrasound data acquisition and visualization“. International Congress Series 1230 (Juni 2001): 1245–46. http://dx.doi.org/10.1016/s0531-5131(01)00250-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

., Saraswati Teli. „SMART REAL TIME EMBEDDED ARDUINO BASED DATA ACQUISITION SYSTEM“. International Journal of Research in Engineering and Technology 04, Nr. 08 (25.08.2015): 258–62. http://dx.doi.org/10.15623/ijret.2015.0408045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Huesman, R. H., G. J. Klein und T. K. Fleming. „A Hybrid UNIX Controller for Real-Time Data Acquisition“. IEEE Transactions on Nuclear Science 43, Nr. 3 (Juni 1996): 2150. http://dx.doi.org/10.1109/tns.1996.502309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Nele, L., E. Sarno und A. Keshari. „An image acquisition system for real-time seam tracking“. International Journal of Advanced Manufacturing Technology 69, Nr. 9-12 (24.07.2013): 2099–110. http://dx.doi.org/10.1007/s00170-013-5167-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Wright, Ronald C., Stephen J. Riederer, Farhad Farzaneh, Phillip J. Rossman und Yu Liu. „Real-time MR fluoroscopic data acquisition and image reconstruction“. Magnetic Resonance in Medicine 12, Nr. 3 (Dezember 1989): 407–15. http://dx.doi.org/10.1002/mrm.1910120314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Dutreve, Ludovic, Alexandre Meyer und Sada Bouakaz. „Easy acquisition and real-time animation of facial wrinkles“. Computer Animation and Virtual Worlds 22, Nr. 2-3 (April 2011): 169–76. http://dx.doi.org/10.1002/cav.395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Arjona, Rosario, und Iluminada Baturone. „A hardware solution for real-time intelligent fingerprint acquisition“. Journal of Real-Time Image Processing 9, Nr. 1 (02.11.2012): 95–109. http://dx.doi.org/10.1007/s11554-012-0286-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Lee, SeungWoo, So Jeong Nam und Jai-Kyung Lee. „Real-time data acquisition system and HMI for MES“. Journal of Mechanical Science and Technology 26, Nr. 8 (August 2012): 2381–88. http://dx.doi.org/10.1007/s12206-012-0615-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Uthaiah M S, Hiren, und Jagan Babu A. „Real Time Patient Monitoring System“. International Transactions on Electrical Engineering and Computer Science 3, Nr. 1 (31.03.2024): 34–40. http://dx.doi.org/10.62760/iteecs.3.1.2024.75.

Der volle Inhalt der Quelle
Annotation:
This research introduces a comprehensive real-time patient monitoring system leveraging IoT for continuous data acquisition. The system employs Blynk, a mobile app, for real-time alerts through email and mobile notifications. Monitoring vital parameters such as temperature, humidity, and heart rate, the collected data is displayed on an LCD and stored in the cloud via the Blynk platform. An integrated buzzer ensures immediate alerts for abnormal values, enhancing the system's responsiveness. This innovative approach enhances patient care by providing instant notifications and access to crucial health metrics, contributing to proactive medical interventions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie