Auswahl der wissenschaftlichen Literatur zum Thema „Reactive processes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reactive processes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Reactive processes"

1

Stichlmair, Johann, und Thomas Frey. „Reactive Distillation Processes“. Chemical Engineering & Technology 22, Nr. 2 (Februar 1999): 95–103. http://dx.doi.org/10.1002/(sici)1521-4125(199902)22:2<95::aid-ceat95>3.0.co;2-#.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Georgievska, Sonja, und Suzana Andova. „Testing Reactive Probabilistic Processes“. Electronic Proceedings in Theoretical Computer Science 28 (26.06.2010): 99–113. http://dx.doi.org/10.4204/eptcs.28.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Noeres, C., E. Y. Kenig und A. Górak. „Modelling of reactive separation processes: reactive absorption and reactive distillation“. Chemical Engineering and Processing: Process Intensification 42, Nr. 3 (März 2003): 157–78. http://dx.doi.org/10.1016/s0255-2701(02)00086-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kaminski, Clemens. „Fluorescence Imaging of Reactive Processes“. Zeitschrift für Physikalische Chemie 219, Nr. 6-2005 (Juni 2005): 747–74. http://dx.doi.org/10.1524/zpch.219.6.747.65706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jarrett, Matthew A., Ansley Tullos Gilpin, Jillian M. Pierucci und Ana T. Rondon. „Cognitive and reactive control processes“. International Journal of Behavioral Development 40, Nr. 1 (10.03.2015): 53–57. http://dx.doi.org/10.1177/0165025415575625.

Der volle Inhalt der Quelle
Annotation:
Attention-deficit/hyperactivity disorder (ADHD) can be identified in the preschool years, but little is known about the correlates of ADHD symptoms in preschool children. Research to date suggests that factors such as temperament, personality, and neuropsychological functioning may be important in understanding the development of early ADHD symptomatology. The current study sought to extend this research by examining how cognitive and reactive control processes predict ADHD symptoms. Data were drawn from a larger study that measured the cognitive, social, and emotional functioning of preschool children. Eighty-seven children (aged 4–6 years) were evaluated using teacher report and laboratory task measures relevant to cognitive control (i.e., conscientiousness, working memory) and reactive control (i.e., neuroticism, delay of gratification) processes. In multiple regression analyses, cognitive control variables added unique variance in the prediction of both inattention and hyperactivity, but only reactive control variables added unique variance in the prediction of hyperactivity. The current findings align with past research suggesting that cognitive control processes (e.g., conscientiousness) are related to both inattention and hyperactivity/impulsivity, while reactive control processes (e.g., neuroticism) are more strongly related to hyperactivity/impulsivity in preschool children. Future longitudinal research utilizing various methods and measures is needed to understand how cognitive and reactive control processes contribute to ADHD symptom development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ruiz, Gerardo, Misael Diaz und Lakshmi N. Sridhar. „Singularities in Reactive Separation Processes“. Industrial & Engineering Chemistry Research 47, Nr. 8 (April 2008): 2808–16. http://dx.doi.org/10.1021/ie0716159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sproul, W. D., D. J. Christie und D. C. Carter. „Control of reactive sputtering processes“. Thin Solid Films 491, Nr. 1-2 (November 2005): 1–17. http://dx.doi.org/10.1016/j.tsf.2005.05.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ramesh, S. „Implementation of communicating reactive processes“. Parallel Computing 25, Nr. 6 (Juni 1999): 703–27. http://dx.doi.org/10.1016/s0167-8191(99)00013-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Secco, Carolinne, Maria Eduarda Kounaris Fuziki, Angelo Marcelo Tusset und Giane Gonçalves Lenzi. „Reactive Processes for H2S Removal“. Energies 16, Nr. 4 (10.02.2023): 1759. http://dx.doi.org/10.3390/en16041759.

Der volle Inhalt der Quelle
Annotation:
Growing demand for renewables and sustainable energy production contributes to a growing interest in producing high quality biomethane from biogas. Despite having methane (CH4) as its main component, biogas may also present other noncombustible substances in its composition, i.e., carbon dioxide (CO2), nitrogen (N2) and hydrogen sulfide (H2S). Contaminant gases, such as CO2 and H2S, are impurities known for being the main causes for the decrease of biogas calorific value and corrosion, wear of pipes, and engines, among others. Thus, it is necessary to remove these compounds from the biogas before it can be used in applications such as electricity production, thermal purposes, and replacement of conventional fossil fuels in vehicles, as well as injection into natural gas distribution networks. In this context, the present work aimed to present a systematic review of the literature using the multicriteria Methodi Ordinatio methodology and to describe processes and materials for H2S removal. The discussion indicated new materials used, as well as the advantages and disadvantages observed and the limitations in industrial implementation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Berry, David A., und Ka M. Ng. „Synthesis of reactive crystallization processes“. AIChE Journal 43, Nr. 7 (Juli 1997): 1737–50. http://dx.doi.org/10.1002/aic.690430711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Reactive processes"

1

Goller, Bernhard F. „Reactive nano silicon : mediated processes“. Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516960.

Der volle Inhalt der Quelle
Annotation:
In this thesis basic methods for the fabrication and characterisation of several nano-silicon containing systems are presented. Due to their morphology, these systems are highly reactive. Silicon wafers were used to prepare layers of porous silicon via electrochemically etching and micro– and nano– sized silicon powders were chemically etched in order to yield silicon nanoparticles. Dependent on the fabrication, particle size of the nanocrystals and porosity of the assemblies can be tailored over a wide range: mean particle sizes can be between 3 to 20 nm and porosities can be varied from 10 to 90 %. A huge surface area of up to 500m2/g which is in addition, due to the fabrication process, hydrogen terminated, entail the outstanding chemical and photo-chemical properties of nanocrystalline silicon. Both, chemical and photo-chemical properties of silicon nanocrystal structures are investigated. The emphasis lies on optical spectroscopy. The indirect band gap structure of silicon in combination with quantum confinement effects are the origin of the interesting luminescence properties of nano-silicon. The energy transfer process from photo-excited excitons confined in silicon nanocrystals to molecules present in the surrounding ambient, like oxygen or a variety of organic substances, has been studied. Measurements demonstrated that long-living excitons very efficiently transfer their energy to surrounding molecules. The low probability of creating excitons which can persist for a long time, from μs to ms, by a photon and structural properties of porous silicon, or rather its reactive surface, however, seem to be the reason for a low total quantum yield of sensitised excited singlet state oxygen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bullara, Domenico. „Nonlinear reactive processes in constrained media“. Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209073.

Der volle Inhalt der Quelle
Annotation:
In this thesis we show how reactive processes can be affected by the presence of different types of spatial constraints, so much so that their nonlinear dynamics can be qualitatively altered or that new and unexpected behaviors can be produced. To understand how this interplay can occur in general terms, we theoretically investigate four very different examples of this situation.

The first system we study is a reversible trimolecular chemical reaction which is taking place in closed one-dimensional lattices. We show that the low dimensionality may or may not prevent the reaction from reaching its equilibrium state, depending on the microscopic properties of the molecular reactive mechanism.

The second reactive process we consider is a network of biological interactions between pigment cells on the skin of zebrafish. We show that the combination of short-range and long-range contact-mediated feedbacks can promote a Turing instability which gives rise to stationary patterns in space with intrinsic wavelength, without the need of any kind of motion.

Then we investigate the behavior of a typical chemical oscillator (the Brusselator) when it is constrained in a finite space. We show that molecular crowding can in such cases promote new nonlinear dynamical behaviors, affect the usual ones or even destroy them.

Finally we look at the situation where the constraint is given by the presence of a solid porous matrix that can react with a perfect gas in an exothermic way. We show on one hand that the interplay between reaction, heat flux and mass transport can give rise to the propagation of adsorption waves, and on the other hand that the coupling between the chemical reaction and the changes in the structural properties of the matrix can produce sustained chemomechanical oscillations.

These results show that spatial constraints can affect the kinetics of reactions, and are able to produce otherwise absent nonlinear dynamical behaviors. As a consequence of this, the usual understanding of the nonlinear dynamics of reactive systems can be put into question or even disproved. In order to have a better understanding of these systems we must acknowledge that mechanical and structural feedbacks can be important components of many reactive systems, and that they can be the very source of complex and fascinating phenomena.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Daniel, Guido. „Conceptual design of reactive distillation processes“. Thesis, University of Manchester, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503083.

Der volle Inhalt der Quelle
Annotation:
Integrated processes such as reactive distillation offer the potential for reduced capital and operating costs compared to conventional flowsheets. In this work new tools for the identification of the optimal reactive distillation process with the optimal degree of integration are developed. A conceptual design method based on the boundary value method is used for a set of reactive distillation processes. The combination of a reactive distillation column with a pre-reactor is a valuable alternative to standalone reactive distillation columns. This thesis presents an approach to identify promising designs for such flowsheets and the optimum distribution of the reaction extent between the pre-reactor and the reactive distillation column. The methodology uses a boundary value method for the design of the column; chemical equilibrium is assumed. The column usually consists of a reactive `core', two rectifying sections and one stripping section. This work presents an approach to identify promising designs for standalone reactive distillation columns as well as for reactor - reactive distillation column flowsheets, when reaction kinetics are available. Reaction kinetics are considered and several near-optimal flowsheet designs are generated. A new approach for the conceptual design of double-feed reactive distillation columns is presented. One of the feed streams is situated at the boundary of the reactive section and the other one can be fed into the non-reactive section of the column. Thus the column consists of an additional separating section, which offers the opportunity to add an additional function to the column. The production of methyl acetate is an example for such a column structure. The additional section in that case acts as an extractive distillation zone. Here also chemical equilibrium is assumed. The integration of further separation steps with a reactive distillation column leads to a highly integrated process: a reactive dividing wall column. Within one apparatus, more than two products can be obtained and the capital cost can be reduced drastically. Furthermore, the well-known reduction in energy demand for dividing wall columns compared to a sequence of conventional distillation columns can lead to reduced operating costs. However, the simulation, design and operation of such complex columns is complicated. A novel approach for the conceptual design of reactive dividing wall columns is presented in this work. Chemical equilibrium is assumed on every reactive stage of the column. The use of the concept of product regions and composition manifolds during all proposed design procedures leads to an increased robustness when compared to conventional approaches based on BVMs. Furthermore, the approaches can be used for n-component systems. Several column designs with different design and operating' parameters are identified for each reactive distillation process, allowing the process engineer to compare and choose from a selection of designs. These tools can assist in identifying the optimal degree of integration for reactive distillation processes ranging from reactor - reactive distillation combinations via complex double feed reactive distillation columns with additional separating sections to the most integrated reactive distillation process: the reactive dividing wall column. The new methodology offers an easy to use tool for process engineers, which assists in identifying an economical integrated reaction-distillation process and could lead to increased industrial applications of technologies coupling unit operations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Harkin-Jones, Eileen M. A. „Rotational moulding of reactive plastics“. Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317442.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ströhlein, Guido. „Modeling of reactive- and bio-chromatographic processes /“. Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shao, Haibing. „Modelling reactive transport processes in porous media“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61738.

Der volle Inhalt der Quelle
Annotation:
Reactive transport modelling has wide applications in geosciences. In the field of hydrogeology, it has been utilised to simulate the biogeochemical processes that disperse and degrade contaminants in the aquifer. For geotechnical applications, such as geological CO2 sequestration, the reaction of CO2 with the ambient saline aquifer determines the final success of storage. In a radioactive waste repository, scientists rely on reactive transport models to predict the mobilisation of hazardous radionuclides within space and time. In this work, the multi-component mass transport code OpenGeoSys, was coupled with two geochemical solvers, the Gibbs Energy Minimization Selektor (GEM) and the Biogeochemical Reaction Network Simulator (BRNS). Both coupled codes were verified against analytical solutions and simulation results from other numerical models. Moreover, the coupling interface was developed for parallel simulation. Test runs showed that the speed-up of reaction part had a very good linearity with number of nodes in the mesh. However, for three dimensional problems with complex geochemical reactions, the model performance was dominated by solving transport equations of mobile chemical components. OpenGeoSys-BRNS was applied to a two dimensional groundwater remediation problem. Its calculated concentration profiles fitted very well with analytical solutions and numerical results from TBC. The model revealed that natural attenuation of groundwater contaminants is mainly controlled by the mixing of carbon source and electron donor. OpenGeoSys-GEM was employed to investigate the retardation mechanism of radionuclides in the near field of a nuclear waste repository. Radium profiles in an idealised bentonite column was modelled with varying clay/water ratios. When clay content is limited, Ba-Sr-Ra sulfate solid solutions have a very strong retardation effect on the aqueous radium. Nevertheless, when clay mineral is abundant, cation exchange sites also attract Sr and Ba, thus dominates the transport of Ra.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Murat, Muhamad Nazri. „Novel catalytic structures for reactive distillation processes“. Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stein, Erik [Verfasser]. „Synthesis of Reactive Distillation Processes / Erik Stein“. Aachen : Shaker, 2003. http://d-nb.info/1181602440/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Biller, Nicholas Charles Trinder. „Modelling and control of reactive distillation processes“. Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Thomson, Douglas W. „Generation of reactive intermediates by reductive processes“. Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Reactive processes"

1

Norman, Gethin Josiah. Metric semantics for reactive probabilistic processes. Birmingham: University of Birmingham, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

National Institute of Standards and Technology (U.S.), Hrsg. Integration strategies for the reactive scheduling. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Glabbeek, Rob J. van. Reactive, generative, and stratified models of probabilistic processes. Stanford, Calif: Dept. of Computer Science, Stanford University, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cooper, Joanne Lorna. Inelastic and reactive collision processes of the methylidyne radical. Manchester: University of Manchester, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

1942-, Schulz Horst D., Teutsch Georg und Deutsche Forschungsgemeinschaft. Schwerpunktprogramm 546 Geochemische Prozesse mit Langzeitfolgen im Anthropogen Beeinflüssten Sickerwasser und Grundwasser., Hrsg. Geochemical processes: Conceptual models for reactive transport in soil and groundwater. Weinheim: Wiley-VCH, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

IAHR/AIRH, Symposium on Transport and Reactive Processes in Aquifers (1994 Zürich Switzerland). Transport and reactive processes in aquifers: Proceedings of the IAHR/AIRH Symposium on Transport and Reactive Processes in Aquifers, Zürich, Switzerland, 11-15 April 1994. Rotterdam: Balkema, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Almeida-Rivera, Cristhian Pau l. Designing reactive distillation processes with improved efficiency: Economy, exergy loss and responsiveness. [S.l: s.n.], 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chastaing, Delphine. Reactive and inelastic processes in the gas-phase at ultra-low temperatures. Birmingham: University of Birmingham, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

J, Jedlinski Zbigniew, und International Union of Pure and Applied Chemistry., Hrsg. Electron transfer processes and reactive intermediates in modern chemistry: Held i Krakow, Poland, September 3-7, 1997. Weinheim: Wiley-VCH Verlag, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Y, Limoge, und Bocquet J. L, Hrsg. Reactive phase formation at interfaces and diffusion processes: Proceedings of the international meeting held in Aussois (France) May 21-28, 1993. Aedermannsdord, Switzerland: Trans Tech Publications, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Reactive processes"

1

Träubel, Harro. „Reactive Processes“. In New Materials Permeable to Water Vapor, 75–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59978-1_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hoffmann, Ulrich, Christian Horst und Ulrich Kunz. „Reactive Comminution“. In Integrated Chemical Processes, 407–36. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605738.ch14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rieckmann, Thomas, und Susanne Völker. „Reactive Filtration“. In Integrated Chemical Processes, 437–52. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605738.ch15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kenig, Eugeny Y., und Andrzej Górak. „Reactive Absorption“. In Integrated Chemical Processes, 265–311. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605738.ch9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kiss, Anton Alexandru. „Reactive Separation Processes“. In Process Intensification Technologies for Biodiesel Production, 25–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03554-3_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Berg, Sören, Tomas Nyberg und Tomas Kubart. „Modelling of Reactive Sputtering Processes“. In Reactive Sputter Deposition, 131–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76664-3_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wibowo, Christianto, Vaibhav V. Kelkar, Ketan D. Samant, Joseph W. Schroer und Ka M. Ng. „Development of Reactive Crystallization Processes“. In Integrated Chemical Processes, 339–58. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605738.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schildhauer, Tilman J., Freek Kapteijn, Achim K. Heibel, Archis A. Yawalkar und Jacob A. Moulijn. „Reactive Stripping in Structured Catalytic Reactors: Hydrodynamics and Reaction Performance“. In Integrated Chemical Processes, 233–64. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605738.ch8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shao, Haibing, Sebastian Bauer, Florian Centler, Georg Kosakowski, Shuang Jin und Mingliang Xie. „Reactive Transport“. In Thermo-Hydro-Mechanical-Chemical Processes in Porous Media, 313–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27177-9_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bart, Hans-Jörg. „Reactive Extraction: Principles and Apparatus Concepts“. In Integrated Chemical Processes, 313–37. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605738.ch10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Reactive processes"

1

Wiss, Erik, Nesrine Jaziri, Adam Yuile, Jens Müller und Steffen Wiese. „Experimental Study on Reactive Joining Processes on LTCC Substrates“. In 2024 IEEE 10th Electronics System-Integration Technology Conference (ESTC), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/estc60143.2024.10712029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yuile, Adam, Nesrine Jaziri, Erik Wiss, Jens Müller und Steffen Wiese. „Simulations of Thermocouple Measurements During Reactive Bonding Processes on LTCC Substrates“. In 2024 IEEE 10th Electronics System-Integration Technology Conference (ESTC), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/estc60143.2024.10712001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gao, Qianhui, Yang He, Renyu Liu und Qianhui Gao. „HazardClassTransformer: Transformer-Based Model for Reactive Chemical Hazard Classification in Industrial Processes“. In 2024 3rd International Conference on Artificial Intelligence, Internet of Things and Cloud Computing Technology (AIoTC), 16–22. IEEE, 2024. http://dx.doi.org/10.1109/aiotc63215.2024.10748315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sadiek, Ibrahim, Norbert Lang, Adam J. Fleisher und Jean-Pierre van Helden. „Precision Frequency Comb Spectroscopy of Reactive Molecular Plasmas“. In CLEO: Science and Innovations, SF2F.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf2f.6.

Der volle Inhalt der Quelle
Annotation:
Using precision frequency comb spectroscopy, we study low-pressure molecular plasmas containing nitrogen, hydrogen, and a carbon source. We obtain precise quantum-state-resolved knowledge of plasma-generated molecules, providing insights into the non-thermal nature of plasma chemical processes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Berry, G., S. Ramesh und R. K. Shyamasundar. „Communicating reactive processes“. In the 20th ACM SIGPLAN-SIGACT symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/158511.158526.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

WU, YiHan, und HaiLin He. „Reactive ion etching and deep reactive ion etching processes“. In 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), herausgegeben von Xuexia Ye. SPIE, 2022. http://dx.doi.org/10.1117/12.2634681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

WU, YiHan, und HaiLin He. „Reactive ion etching and deep reactive ion etching processes“. In 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), herausgegeben von Xuexia Ye. SPIE, 2022. http://dx.doi.org/10.1117/12.2634681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wolfrum, J. „Elementary chemical processes in reactive flows“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.mc1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Savio, Domnic, Stamatis Karnouskos, Luciana Moreira Sa de Souza, Vlad Trifa, Dominique Guinard und Patrik Spiess. „Reactive business processes for factory automation“. In 2009 7th IEEE International Conference on Industrial Informatics (INDIN). IEEE, 2009. http://dx.doi.org/10.1109/indin.2009.5195874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Spies, Irina, Axel Schumacher, Stephan Knappmann, Bastian Rheingans, Jolanta Janczak-Rusch und Lars P. H. Jeurgens. „Acceleration measurements during reactive bonding processes“. In 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition. IEEE, 2017. http://dx.doi.org/10.23919/empc.2017.8346881.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Reactive processes"

1

Yost, F. G., E. J. O`Toole, P. A. Sackinger und T. P. Swiler. Model determination and validation for reactive wetting processes. Office of Scientific and Technical Information (OSTI), Januar 1998. http://dx.doi.org/10.2172/564079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rutqvist, Jonny, James Davis, Liange Zheng, Victor Vilarrasa, James Houseworth und Jens Birkholzer. Investigation of Coupled THMC Processes and Reactive Transport: FY14 Progress. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1150010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Knyazev, Vadim D. Kinetics and mechanisms of elementary reactive processes in polymer pyrolysis. Gaithersburg, MD: National Institute of Standards and Technology, März 2009. http://dx.doi.org/10.6028/nist.gcr.09-923.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Steefel, Carl, Jonny Rutqvist, Chin-Fu Tsang, Hui-Hai Liu, Eric Sonnenthal, Jim Houseworth und Jens Birkholzer. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS). Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/988174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Davis, J., J. Rutqvist, C. Steefel, R. Tinnacher, V. Vilarrasa, L. Zheng, I. Bourg, H. Liu und J. Birkholzer. Investigation of Reactive Transport and Coupled THMC Processes in the EBS. Office of Scientific and Technical Information (OSTI), Juli 2013. http://dx.doi.org/10.2172/1165203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zavarin, M., S. K. Roberts, T. P. Rose und D. L. Phinney. Validating Mechanistic Sorption Model Parameters and Processes for Reactive Transport in Alluvium. Office of Scientific and Technical Information (OSTI), Mai 2002. http://dx.doi.org/10.2172/15002138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Meuwly, Markus. Investigations of Reactive Processes at Temperatures Relevant to the Hypersonic Flight Regime. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada611797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maharrey, Sean P., Deneille Wiese-Smith, Aaron M. Highley, Richard Behrens und Jeffrey J. Kay. Interactions between ingredients in IMX-101: Reactive Chemical Processes Control Insensitive Munitions Properties. Office of Scientific and Technical Information (OSTI), März 2014. http://dx.doi.org/10.2172/1204108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lichtner, Peter C., Glenn E. Hammond, Chuan Lu, Satish Karra, Gautam Bisht, Benjamin Andre, Richard Mills und Jitendra Kumar. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes. Office of Scientific and Technical Information (OSTI), Januar 2015. http://dx.doi.org/10.2172/1168703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Clement, T. Prabhakar, Mark O. Barnett, Chunmiao Zheng und Norman L. Jones. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales. Office of Scientific and Technical Information (OSTI), Mai 2010. http://dx.doi.org/10.2172/978335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie