Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Re-identification and image enhancement“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Re-identification and image enhancement" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Re-identification and image enhancement"
Xiao, Ruoxiu, Jian Yang, Mahima Goyal, Yue Liu und Yongtian Wang. „Automatic Vasculature Identification in Coronary Angiograms by Adaptive Geometrical Tracking“. Computational and Mathematical Methods in Medicine 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/796342.
Der volle Inhalt der QuelleMoler, Emilce, Virginia Ballarin, Franco Pessana, Sebastian Torres und Dario Olmo. „Fingerprint Identification Using Image Enhancement Techniques“. Journal of Forensic Sciences 43, Nr. 3 (01.05.1998): 16202J. http://dx.doi.org/10.1520/jfs16202j.
Der volle Inhalt der QuelleWang, Yifeng, Zhijiang Zhang, Ning Zhang und Dan Zeng. „Attention Modulated Multiple Object Tracking with Motion Enhancement and Dual Correlation“. Symmetry 13, Nr. 2 (04.02.2021): 266. http://dx.doi.org/10.3390/sym13020266.
Der volle Inhalt der QuelleGupta, S., J. M. Solomon, T. A. Tasciyan, M. M. Cao, R. D. Stone, J. L. Ostuni, J. M. Ohayon et al. „Interferon-beta-1b effects on re-enhancing lesions in patients with multiple sclerosis“. Multiple Sclerosis Journal 11, Nr. 6 (Dezember 2005): 658–68. http://dx.doi.org/10.1191/1352458505ms1229oa.
Der volle Inhalt der QuelleYan, Lingyu, Jiarun Fu, Chunzhi Wang, Zhiwei Ye, Hongwei Chen und Hefei Ling. „Enhanced network optimized generative adversarial network for image enhancement“. Multimedia Tools and Applications 80, Nr. 9 (23.01.2021): 14363–81. http://dx.doi.org/10.1007/s11042-020-10310-z.
Der volle Inhalt der QuelleDZULKIFLI, FAHMI AKMAL. „Identification of Suitable Contrast Enhancement Technique for Improving the Quality of Astrocytoma Histopathological Images.“ ELCVIA Electronic Letters on Computer Vision and Image Analysis 20, Nr. 1 (27.05.2021): 84–98. http://dx.doi.org/10.5565/rev/elcvia.1256.
Der volle Inhalt der QuelleAijing, Luo, und Yin Jin. „Research on an Improved Medical Image Enhancement Algorithm Based on P-M Model“. Open Biomedical Engineering Journal 9, Nr. 1 (31.08.2015): 209–13. http://dx.doi.org/10.2174/1874120701509010209.
Der volle Inhalt der QuelleStankevich, Sergey, Oleh Maslenko und Vitalii Andronov. „Neural network technology adaptation to the small-size objects identification in satellite images of insufficient resolution within the graphic reference images database“. Ukrainian journal of remote sensing, Nr. 27 (10.12.2020): 13–17. http://dx.doi.org/10.36023/ujrs.2020.27.175.
Der volle Inhalt der QuelleAILISTO, HEIKKI, MIKKO LINDHOLM und PAULI TIKKANEN. „A REVIEW OF FINGERPRINT IMAGE ENHANCEMENT METHODS“. International Journal of Image and Graphics 03, Nr. 03 (Juli 2003): 401–24. http://dx.doi.org/10.1142/s0219467803001081.
Der volle Inhalt der QuelleKim, Changi, Junghun Han, Giwon Yoon, Dongjin Kim und Sejung Yang. „Novel Framework for Knee Arthroscopic Image Enhancement“. Journal of Medical Imaging and Health Informatics 10, Nr. 6 (01.06.2020): 1459–65. http://dx.doi.org/10.1166/jmihi.2020.3070.
Der volle Inhalt der QuelleDissertationen zum Thema "Re-identification and image enhancement"
Abdelkarim, Ahmad Ali. „Effect of JPEG2000 compression on landmark identification of lateral cephalometric digital radiographs a thesis /“. San Antonio : UTHSC, 2008. http://learningobjects.library.uthscsa.edu/cdm4/item_viewer.php?CISOROOT=/theses&CISOPTR=57&CISOBOX=1&REC=16.
Der volle Inhalt der QuelleTuresson, Eric. „Multi-camera Computer Vision for Object Tracking: A comparative study“. Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21810.
Der volle Inhalt der QuelleSenses, Engin Utku. „Blur Estimation And Superresolution From Multiple Registered Images“. Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609929/index.pdf.
Der volle Inhalt der QuelleDimitrov, Emanuil. „Fingerprints recognition“. Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5522.
Der volle Inhalt der QuelleNowadays biometric identification is used in a variety of applications-administration, business and even home. Although there are a lot of biometric identifiers, fingerprints are the most widely spread due to their acceptance from the people and the cheap price of the hardware equipment. Fingerprint recognition is a complex image recognition problem and includes algorithms and procedures for image enhancement and binarization, extracting and matching features and sometimes classification. In this work the main approaches in the research area are discussed, demonstrated and tested in a sample application. The demonstration software application is developed by using Verifinger SDK and Microsoft Visual Studio platform. The fingerprint sensor for testing the application is AuthenTec AES2501.
Kaufman, Jason R. „Spatial-Spectral Feature Extraction on Pansharpened Hyperspectral Imagery“. Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1408706595.
Der volle Inhalt der QuelleYe, Mang. „Open-world person re-identification“. HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/688.
Der volle Inhalt der QuelleBoudjenouia, Fouad. „Restauration d’images avec critères orientés qualité“. Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2031/document.
Der volle Inhalt der QuelleThis thesis concerns the blind restoration of images (formulated as an ill-posed and illconditioned inverse problem), considering a SIMO system. Thus, a blind system identification technique in which the order of the channel is unknown (overestimated) is introduced. Firstly, a simplified version at reduced cost SCR of the cross relation (CR) method is introduced. Secondly, a robust version R-SCR based on the search for a sparse solution minimizing the CR cost function is proposed. Image restoration is then achieved by a new approach (inspired from 1D signal decoding techniques and extended here to the case of 2D images) based on an efficient tree search (Stack algorithm). Several improvements to the ‘Stack’ method have been introduced in order to reduce its complexity and to improve the restoration quality when the images are noisy. This is done using a regularization technique and an all-at-once optimization approach based on the gradient descent which refines the estimated image and improves the algorithm’s convergence towards the optimal solution. Then, image quality measurements are used as cost functions (integrated in the global criterion), in order to study their potential for improving restoration performance. In the context where the image of interest is corrupted by other interfering images, its restoration requires the use of blind sources separation techniques. In this sense, a comparative study of some separation techniques based on the property of second-order decorrelation and sparsity is performed
Franco, Alexandre da Costa e. Silva. „On deeply learning features for automatic person image re-identification“. Escola Politécnica / Instituto de Matemática, 2016. http://repositorio.ufba.br/ri/handle/ri/21639.
Der volle Inhalt der QuelleApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-03-10T14:52:25Z (GMT) No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5)
Made available in DSpace on 2017-03-10T14:52:25Z (GMT). No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5)
The automatic person re-identification (re-id) problem resides in matching an unknown person image to a database of previously labeled images of people. Among several issues to cope with this research field, person re-id has to deal with person appearance and environment variations. As such, discriminative features to represent a person identity must be robust regardless those variations. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning, which aims at learning features directly from raw image data. Although deep learning has recently achieved significant improvements in person re-identification, found on some few recent works, there is still room for learning strategies, which can be exploited to increase the current state-of-the-art performance. In this work a novel deep learning strategy is proposed, called here as coarse-to-fine learning (CFL), as well as a novel type of feature, called convolutional covariance features (CCF), for person re-identification. CFL is based on the human learning process. The core of CFL is a framework conceived to perform a cascade network training, learning person image features from generic-to-specific concepts about a person. Each network is comprised of a convolutional neural network (CNN) and a deep belief network denoising autoenconder (DBN-DAE). The CNN is responsible to learn local features, while the DBN-DAE learns global features, robust to illumination changing, certain image deformations, horizontal mirroring and image blurring. After extracting the convolutional features via CFL, those ones are then wrapped in covariance matrices, composing the CCF. CCF and flat features were combined to improve the performance of person re-identification in comparison with component features. The performance of the proposed framework was assessed comparatively against 18 state-of-the-art methods by using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), cumulative matching characteristic curves and top ranking references. After a thorough analysis, our proposed framework demonstrated a superior performance.
Wang, Xiangwen. „Photo-based Vendor Re-identification on Darknet Marketplaces using Deep Neural Networks“. Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83447.
Der volle Inhalt der QuelleMaster of Science
Taking advantage of the high anonymity of darknet, cybercriminals have set up underground trading websites such as darknet markets for trading illegal goods. To understand the relationships between cybercriminals and identify coordinated activities, it is necessary to identify the multiple accounts hold by the same vendor. Apart from manual investigation, previous studies have proposed methods for linking multiple accounts through analyzing the writing styles hidden in the users' online posts, which face key challenges in similar tasks on darknet markets. In this thesis, we propose a novel approach to link multiple identities within the same darknet market or across different markets by analyzing the product photos. We develop a system where a series of deep neural networks (DNNs) are used with transfer learning to extract distinct features from a vendor's photos automatically. Using real-world datasets from darknet markets, we evaluate the proposed system which shows clear advantages over the writing style based system. Further analysis of the results reported by the proposed system reveal new insights into coordinated activities such as price manipulation, buyer scam and product stocking and reselling for those vendors who hold multiple accounts.
Ibn, Khedher Mohamed. „Ré-identification de personnes à partir des séquences vidéo“. Thesis, Evry, Institut national des télécommunications, 2014. http://www.theses.fr/2014TELE0018/document.
Der volle Inhalt der QuelleThis thesis focuses on the problem of hu man re-identification through a network of cameras with non overlapping fields of view. Human re-identification is defined as the task of determining if a persan leaving the field of one camera reappears in another. It is particularly difficult because of persons' significant appearance change within different cameras vision fields due to various factors. In this work, we propose to exploit the complementarity of the person's appearance and style of movement that leads to a description that is more robust with respect to various complexity factors. This is a new approach for the re-identification problem that is usually treated by appearance methods only. The major contributions proposed in this work include: person's description and features matching. First we study the re-identification problem and classify it into two scenarios: simple and complex. In the simple scenario, we study the feasibility of two approaches: a biometric approach based on gait and an appearance approach based on spatial Interest Points (IPs) and color features. In the complex scenario, we propose to exploit a fusion strategy of two complementary features provided by appearance and motion descriptions. We describe motion using spatiotemporal IPs, and use the spatial IPs for describing the appearance. For feature matching, we use sparse representation as a local matching method between IPs. The fusion strategy is based on the weighted sum of matched IPs votes and then applying the rule of majority vote. Moreover, we have carried out an error analysis to identify the sources of errors in our proposed system to identify the most promising areas for improvement
Bücher zum Thema "Re-identification and image enhancement"
Gallagher, Thomas P. Image enhancement and feature extraction of benthic macroinvertebrates. 1996.
Den vollen Inhalt der Quelle findenBaldi, Cindi, Caroline Bartel und Janet Dukerich. Fostering Stakeholder Identification Through Expressed Organizational Identities. Herausgegeben von Michael G. Pratt, Majken Schultz, Blake E. Ashforth und Davide Ravasi. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199689576.013.1.
Der volle Inhalt der QuelleMurphy, Patrick D. Battle of the Blogosphere. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252041037.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Re-identification and image enhancement"
Kumar, Ajay. „3D Fingerprint Image Preprocessing and Enhancement“. In Contactless 3D Fingerprint Identification, 63–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67681-4_5.
Der volle Inhalt der QuelleQiao, Jianping, und Ju Liu. „A SVM-Based Blur Identification Algorithm for Image Restoration and Resolution Enhancement“. In Lecture Notes in Computer Science, 28–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893004_4.
Der volle Inhalt der QuelleSimon-Zorita, D., J. Ortega-Garcia, S. Cruz-Llanas, J. L. Sanchez-Bote und J. Glez-Rodriguez. „An Improved Image Enhancement Scheme for Fingerprint Minutiae Extraction in Biometric Identification“. In Lecture Notes in Computer Science, 217–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45344-x_31.
Der volle Inhalt der QuelleVamsi Kiran Reddy, P., und V. V. Sajith Variyar. „Image Enhancement Using GAN (A Re-Modeling of SR-GAN for Noise Reduction)“. In Information and Communication Technology for Competitive Strategies (ICTCS 2020), 721–29. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0882-7_64.
Der volle Inhalt der QuelleMa, Bingpeng, Yu Su und Frédéric Jurie. „Discriminative Image Descriptors for Person Re-identification“. In Person Re-Identification, 23–42. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6296-4_2.
Der volle Inhalt der QuelleGong, Shengrong, Chunping Liu, Yi Ji, Baojiang Zhong, Yonggang Li und Husheng Dong. „Image Understanding-Person Re-identification“. In Advanced Image and Video Processing Using MATLAB, 475–512. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77223-3_13.
Der volle Inhalt der QuelleHirzer, Martin, Csaba Beleznai, Peter M. Roth und Horst Bischof. „Person Re-identification by Descriptive and Discriminative Classification“. In Image Analysis, 91–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21227-7_9.
Der volle Inhalt der QuelleHuang, Chung-Hsien, Yi-Ta Wu und Ming-Yu Shih. „Unsupervised Pedestrian Re-identification for Loitering Detection“. In Advances in Image and Video Technology, 771–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92957-4_67.
Der volle Inhalt der QuelleFrontoni, Emanuele, Marina Paolanti und Rocco Pietrini. „People Counting in Crowded Environment and Re-identification“. In RGB-D Image Analysis and Processing, 397–425. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28603-3_18.
Der volle Inhalt der QuelleQian, Xuelin, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie Qiu, Yang Wu, Yu-Gang Jiang und Xiangyang Xue. „Pose-Normalized Image Generation for Person Re-identification“. In Computer Vision – ECCV 2018, 661–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01240-3_40.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Re-identification and image enhancement"
ding, Yong. „Pedestrian Re-identification Based on Image Enhancement and Over-fitting Solution Strategies“. In 2018 5th International Conference on Systems and Informatics (ICSAI). IEEE, 2018. http://dx.doi.org/10.1109/icsai.2018.8599465.
Der volle Inhalt der QuelleFronthaler, H., K. Kollreider und J. Bigun. „Pyramid-based Image Enhancement of Fingerprints“. In 2007 IEEE Workshop on Automatic Identification Advanced Technologies. IEEE, 2007. http://dx.doi.org/10.1109/autoid.2007.380591.
Der volle Inhalt der QuelleSepasian, M., C. Mares, S. M. Azimi und W. Balachandran. „Image enhancement for minutiae-based fingerprint identification“. In 2008 37th IEEE Applied Imagery Pattern Recognition Workshop. IEEE, 2008. http://dx.doi.org/10.1109/aipr.2008.4906466.
Der volle Inhalt der QuelleHu, Yibo, Hongqing Hu, Yue Huang, Yuliang Tang, Yifeng Zhao und Shurong Huang. „Research on a LED large screen adaptive image enhancement algorithm“. In 2013 International Conference on Anti-Counterfeiting, Security and Identification (ASID). IEEE, 2013. http://dx.doi.org/10.1109/icasid.2013.6825316.
Der volle Inhalt der QuelleDela Cruz, Jennifer C., Ramon G. Garcia, Jian Chelly Czyrylle V. Cueto, Sherilyn C. Pante und Christopher Glad V. Toral. „Automated Human Identification through Dental Image Enhancement and Analysis“. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ). IEEE, 2019. http://dx.doi.org/10.1109/hnicem48295.2019.9072780.
Der volle Inhalt der QuellePaul, Anto, und R. Lourde. „A Study on Image Enhancement Techniques for Fingerprint Identification“. In 2006 IEEE International Conference on Video and Signal Based Surveillance. IEEE, 2006. http://dx.doi.org/10.1109/avss.2006.14.
Der volle Inhalt der QuelleQiao, Shiquan, Kun Zhang, Xiaowen Zhang und Hengcao Wang. „Research of Knee Infrared Image Noise Reduction and Enhancement“. In 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI). IEEE, 2015. http://dx.doi.org/10.1109/iiki.2015.73.
Der volle Inhalt der QuelleHu, Hongqing, und Guoqiang Ni. „The improved algorithm for the defect of the Retinex image enhancement“. In 2010 International Conference on Anti-Counterfeiting, Security and Identification (2010 ASID). IEEE, 2010. http://dx.doi.org/10.1109/icasid.2010.5551401.
Der volle Inhalt der QuelleSingh, Tripty. „Foggy Image Enhancement and Object Identification by Extended Maxima Algorithm“. In 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI). IEEE, 2017. http://dx.doi.org/10.1109/iciccis.2017.8660851.
Der volle Inhalt der QuelleDim, J. R., H. Murakami und M. Hori. „Use of satellite image enhancement procedures for global cloud identification“. In IS&T/SPIE Electronic Imaging, herausgegeben von Jaakko T. Astola und Karen O. Egiazarian. SPIE, 2010. http://dx.doi.org/10.1117/12.839096.
Der volle Inhalt der Quelle