Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RCS simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RCS simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RCS simulation"
Hao, Jiaxing, Xuetian Wang, Sen Yang und Hongmin Gao. „Intelligent Simulation Technology Based on RCS Imaging“. Applied Sciences 13, Nr. 18 (08.09.2023): 10119. http://dx.doi.org/10.3390/app131810119.
Der volle Inhalt der QuelleJia, Jing, Wen Sheng und Lu Zhang. „Research on Aircraft Target Detection Probability for OTHR“. Applied Mechanics and Materials 644-650 (September 2014): 1261–65. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.1261.
Der volle Inhalt der QuellePrashanth, B. U. V. „Design and Implementation of Radar Cross-Section Models on a Virtex-6 FPGA“. Journal of Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/489765.
Der volle Inhalt der QuellePersson, Bjorn, und M. Norsell. „Conservative RCS Models for Tactical Simulation“. IEEE Antennas and Propagation Magazine 57, Nr. 1 (Februar 2015): 217–23. http://dx.doi.org/10.1109/map.2015.2397151.
Der volle Inhalt der QuelleZhang, Jie, Gerileqimuge, Run Xie, Yanming Song und Quanzhao Sun. „RCS Computation and Analysis of a Diamond-shaped Thermal Jacket for Gun Barrels“. Journal of Physics: Conference Series 2478, Nr. 2 (01.06.2023): 022001. http://dx.doi.org/10.1088/1742-6596/2478/2/022001.
Der volle Inhalt der QuelleHao, Jiaxing, Xuetian Wang, Sen Yang, Hongmin Gao, Cuicui Yu und Wentao Xing. „Intelligent Target Design Based on Complex Target Simulation“. Applied Sciences 12, Nr. 16 (10.08.2022): 8010. http://dx.doi.org/10.3390/app12168010.
Der volle Inhalt der QuelleZhao, Jun Juan, Jin Yuan Yin und Cheng Fan Li. „RCS Simulation of Dihedral Corner Reflector Based FEKO“. Applied Mechanics and Materials 321-324 (Juni 2013): 108–13. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.108.
Der volle Inhalt der QuelleSong, Seungeon, Han-Seop Shin, Dae-Oh Kim, Chul-Ung Kang und Seokjun Ko. „Modelling and Simulation of Glint and RCS of Complex Target“. IEMEK Journal of Embedded Systems and Applications 12, Nr. 1 (28.02.2017): 27–34. http://dx.doi.org/10.14372/iemek.2017.12.1.27.
Der volle Inhalt der QuelleJung, Jinwoo, Changseok Cho, Minsu Choi, Shinjae You, Jungje Ha, Hyunsoo Lee, Cheonyoung Kim, Ilyoung Oh und Yongshik Lee. „Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction“. Sensors 23, Nr. 16 (11.08.2023): 7121. http://dx.doi.org/10.3390/s23167121.
Der volle Inhalt der QuelleMu, Rongjun, und Xin Zhang. „Control Allocation Design of Reaction Control System for Reusable Launch Vehicle“. Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/541627.
Der volle Inhalt der QuelleDissertationen zum Thema "RCS simulation"
Ton, Cuong. „Radar cross section (RCS) simulation for wind turbines“. Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/34754.
Der volle Inhalt der QuelleWind-turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built near military and commercial radar and communication installations, they can cause degradation in the systems performance. The purpose of this research is to study the radar cross section (RCS) of a wind turbine and assess its effect on the performance of radar and communication systems. In this research, some basic scattering characteristics of wind turbines are discussed. Several computational methods of RCS prediction are examined, citing their advantages and disadvantages. Modeling and computational issues that affect the accuracy and convergence of the simulation results are discussed. RCS simulation results for two wind turbine configurations are presented: a horizontal axis, three-blade design and a vertical axis helical design. Several methods of mitigating wind turbine clutter are discussed. Issues of RCS reduction and control for wind turbines are also addressed.
Al-Asad, Zahir. „Implementation of NURBS Objects in a Ray TracingCode for RCS Simulation“. Thesis, Högskolan i Gävle, Ämnesavdelningen för elektronik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-7713.
Der volle Inhalt der QuelleHanslík, Radovan. „Odrazná plocha osobních automobilů“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400701.
Der volle Inhalt der QuelleLindgren, Jonas. „Evaluation of CST Studio Suite for simulation of radar cross-section“. Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-187751.
Der volle Inhalt der QuelleSalhani, Mohamad. „Modélisation et simulation des réseaux mobiles de 4ème [quatrième] génération“. Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7725/1/salhani.pdf.
Der volle Inhalt der QuelleHanslík, Radovan. „Odrazná plocha osobních automobilů“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412967.
Der volle Inhalt der QuelleKljajič, Marko. „Simulační studie robotické linky pro obsluhu obráběcího stroje a realizaci dokončovacích operací“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417547.
Der volle Inhalt der QuelleGrönberg, Christoffer. „Simulering och cykeltidsberäkning av automatiserad produktionslina med hjälp av Process Simulate“. Thesis, Högskolan Väst, Institutionen för ingenjörsvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-2806.
Der volle Inhalt der QuelleThis thesis has been carried out in collaboration with Löfqvist Engineering in Örebro. The task has been to perform a simulation of a large automation line, to be used in the manufacture of exhaust systems for trucks. Based on this simulation accurate cycle times for production are determined. These times can then be used by Löfqvist Engineering to verify the earlier estimated times. The work includes a literature review of Lean Production and how it works with automation. There is also some background information on Just In Time, different file formats and robot simulation in general for the reader to get a bit more background knowledge of the subject. The program that has been selected to perform the simulation is Tecnomatix Process Simulate and its built in Line Simulation module. The automation line consists of four handling robots, 13 operator stations and eight identical welding cells. Cycle times for the automation line have been determined and the result was 6 min 31s, for the automation line to complete one product. Cycle times were determined by calculating the average time to produce 10 pieces of products when the line was full of material. The report describes how the work for arriving at these cycle times have been performed and how simulation problems encountered during such operations have been resolved.
Bui, Nicolas. „Méthode FDTD conforme et d’ordre (2,4) pour le calcul de SER large bande de cibles complexes“. Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0118/document.
Der volle Inhalt der QuelleRigorous numerical methods are used to compute an accurate wideband radar cross section (RCS) evaluation of large complex targets. Among these, finite differences in time domain method is appropriated for the wideband characteristic and also to obtain a transient responses of the target. The Yee scheme, known historically as an FDTD scheme for Maxwell equations, is hindered by two crucial weak points: numerical dispersion which imposes a high mesh resolution; and staircase approximation of curve geometry which deteriorates results quality. High-order space differential operator for FDTD schemes have been investigated to limit numerical dispersion errors. In this thesis, the Conservative Modified FDTD(2,4) scheme has been developed and its performance has shown very accurate results with reasonable workload for RCS computation. Relating to curve geometry modeling problem, metallic edges modeling is still an unsolved problem for FDTD(2,4) schemes with enlarged stencil. Conformal techniques have been developed for the Yee scheme and has been studied for FDTD(2,4) to accurately model curve geometry. We propose a new approach based on oblique thin wire model to model metallic surfaces. RCS computations of several targets have shown that this method is promising
Arzur, Fabien. „Développement de simulateurs de cibles pour radars automobiles 77 GHz“. Thesis, Brest, 2017. http://www.theses.fr/2017BRES0082.
Der volle Inhalt der QuelleThe work presented in this thesis concerns the development of an automotive radar target simulator for 77 GHz radar sensors. In order to continue offering safer vehicles, manufacturers develop more and more performant ADAS systems. We are witnessing a democratization of automotive radar sensors for adaptive cruise control and collision warning. The generalization of such systems on standard cars will require an increased use of test devices both at the manufacturers and in technical control centers. To test and calibrate radars, it is necessary to use Radar Target Simulators (RTS). These devices enable to simulate situations encountered by the radar. Furthermore, these scenarios are becoming increasingly complex with the arrival of autonomous vehicles. A target is defined by three parameters: distance, velocity and radar cross-section (RCS). In order to meet drastic requirements, ZF TRW Autocruise develops its own RTS for production test benches and R&D. RTS must adapt to all radars within a 76 – 81 GHz frequency band, with different modulations and a frequency bandwidth higher than 800 MHz. The system must present the advantages of being a low-cost system, with small dimensions and flexible to be integrated in different applications. The major blocking point is the design of a reconfigurable delay line, able to simulate distances between 1 m and 250 m with a resolution of 0.2 m on a large frequency band and also allowing control of RCS. A compromise will have to be found in order to meet the different specifications. The study showed the impossibility to cover the entire range of distances with one single technology. A hybrid architecture is necessary. A hybrid, tunable, wideband delay line is at study
Bücher zum Thema "RCS simulation"
Hillberg, S. An assessment of TRACE V5 RC1 code against UPTF counter current flow tests. Washington, DC: U.S. Nuclear Regulatory Commission, 2010.
Den vollen Inhalt der Quelle findenPadfield, Gareth D. Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling. Wiley & Sons, Incorporated, John, 2008.
Den vollen Inhalt der Quelle findenPadfield, Gareth D. Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling (Aiaa Education Series). AIAA (American Institute of Aeronautics & Ast, 1996.
Den vollen Inhalt der Quelle findenRubin, Donald, Xiaoqin Wang, Li Yin und Elizabeth Zell. Bayesian causal inference: Approaches to estimating the effect of treating hospital type on cancer survival in Sweden using principal stratification. Herausgegeben von Anthony O'Hagan und Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.24.
Der volle Inhalt der QuelleRepole, Donato. Research of Parallel Computing Neuro-fuzzy Networks for Unmanned Vehicles. RTU Press, 2021. http://dx.doi.org/10.7250/9789934226922.
Der volle Inhalt der QuelleGao, Yanhong, und Deliang Chen. Modeling of Regional Climate over the Tibetan Plateau. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.591.
Der volle Inhalt der QuelleBuchteile zum Thema "RCS simulation"
De Mattia, Salvatore. „SWORD RAS Project“. In Modelling and Simulation for Autonomous Systems, 345–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98260-7_22.
Der volle Inhalt der QuelleCheng, Xiaolin, Jerry M. Parks, Loukas Petridis, Benjamin Lindner, Roland Schulz, Hao-Bo Guo, Goundla Srinivas und Jeremy C. Smith. „Chapter 5. Molecular Simulation in the Energy Biosciences“. In RSC Biomolecular Sciences, 87–114. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735049-00087.
Der volle Inhalt der QuelleBorkowski, Jeffrey, Lotfi Belblidia und Oliver Tsaoi. „S3R Advanced Training Simulator Core Model: Implementation and Validation“. In Springer Proceedings in Physics, 789–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_68.
Der volle Inhalt der QuelleFlikkema, Maarten, Martin van Hees, Timo Verwoest und Arno Bons. „HOLISPEC/RCE: Virtual Vessel Simulations“. In A Holistic Approach to Ship Design, 465–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02810-7_15.
Der volle Inhalt der QuelleSherif, Mohsen, Abdel Azim Ebraheem, Ampar Shetty, Ahmed Sefelnasr, Khaled Alghafli und Mohamed Al Asam. „Evaluation of the Effect of the Wadi Bih Dam on Groundwater Recharge, UAE“. In Natural Disaster Science and Mitigation Engineering: DPRI reports, 509–27. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_21.
Der volle Inhalt der QuelleNewman, Wyatt S. „Simulation in ROS“. In A Systematic Approach to Learning Robot Programming with ROS, 95–151. Boca Raton : CRC Press, [2017]: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315152691-5.
Der volle Inhalt der QuelleSubramanian, Rajesh. „Robot Simulation and Visualization“. In Build Autonomous Mobile Robot from Scratch using ROS, 261–84. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9645-5_5.
Der volle Inhalt der QuelleCardenas, Alfredo E., und Ron Elber. „Chapter 6. Enhancing the Capacity of Molecular Dynamics Simulations with Trajectory Fragments“. In RSC Biomolecular Sciences, 117–37. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735049-00117.
Der volle Inhalt der QuelleTaylor, William R., und Zoe Katsimitsoulia. „Chapter 10. Generalised Multi-level Coarse-grained Molecular Simulation and its Application to Myosin-V Movement“. In RSC Biomolecular Sciences, 249–71. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735049-00249.
Der volle Inhalt der QuelleSubramanian, Rajesh. „Setting Up a Workstation for Simulation“. In Build Autonomous Mobile Robot from Scratch using ROS, 89–130. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9645-5_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RCS simulation"
Liu, Xianben, Shuangshuang Meng, Wenyuan Hao, Mingbin Hu, Shaozhong Fu und Cheng Zhu. „The Design and Simulation of a Broadband Low RCS Radome“. In 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 211–15. IEEE, 2024. http://dx.doi.org/10.1109/emcsipi49824.2024.10705445.
Der volle Inhalt der QuelleZhang, Chuang, Junsheng Yu, Jinbo Ruan und Tianyang Chen. „Monostatic RCS Simulation of Simple Targets in a Terahertz Compact Range“. In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699875.
Der volle Inhalt der QuelleLi, Pingyu, Shu Lin, Zhiheng Liu, Yuwei Zhang, Xingqi Zhang und Xinyue Zhang. „Simulation of RCS Reconfigurable Characteristics for Bistable Glass Fiber Material Printed Antenna“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1591–92. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10687243.
Der volle Inhalt der QuelleLu, Hongyi. „Statistical Research on Bistatic RCS of Floating Platforms Based on Full-Wave Simulation“. In 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA), 1083–90. IEEE, 2024. http://dx.doi.org/10.1109/icipca61593.2024.10709124.
Der volle Inhalt der QuelleWang, Siyuan, Zi He, Dazhi Ding, Lin Liu und Ying Zhou. „Fast RCS Simulation of Target on the Sea Surface Based on the SBR and Advanced Two-scale Method“. In 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10617962.
Der volle Inhalt der QuelleKnolmar, Marcell. „INTEGRATED MODELING OF STAGNATING WATER AND URBAN DRAINAGE SYSTEMS“. In 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 129–36. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/3.1/s12.16.
Der volle Inhalt der QuelleTan, Xiaolong, Ming Fang und Zhixiang Huang. „RCS Simulation and ISAR Imaging of Coated Targets“. In 2019 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2019. http://dx.doi.org/10.1109/compem.2019.8779169.
Der volle Inhalt der QuelleDunham, Darin T., Lisa M. Ehrman, W. Dale Blair und Susan A. Frost. „Simulation assessment of RCS-aided multiple target tracking“. In Optical Engineering + Applications, herausgegeben von Oliver E. Drummond und Richard D. Teichgraeber. SPIE, 2007. http://dx.doi.org/10.1117/12.740892.
Der volle Inhalt der QuelleLi, Xiangying, und Xin Meng. „RCS simulation of spacecraft based on orbital dynamics“. In 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). IEEE, 2009. http://dx.doi.org/10.1109/mape.2009.5355607.
Der volle Inhalt der QuelleHan, Yangyang, Lu Sun und Cong Hu. „HFSS simulation of RCS based on MIMO system“. In Proceedings of the International Conference on Civil, Architecture and Environmental Engineering (ICCAE2016). CRC Press/Balkema P.O. Box 11320, 2301 EH Leiden, The Netherlands: CRC Press/Balkema, 2017. http://dx.doi.org/10.1201/9781315116242-75.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RCS simulation"
Meot, F., V. Ptitsyn, V. Ranjbar und D. Rubin. Polarized e-bunch acceleration at Cornell RCS: Tentative tracking simulations. Office of Scientific and Technical Information (OSTI), Oktober 2017. http://dx.doi.org/10.2172/1408712.
Der volle Inhalt der QuelleChapman und Keshavarz-Valian. L51988 Development of Turbocharger-Reciprocating Engine Simulation (T-RECS). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2002. http://dx.doi.org/10.55274/r0010947.
Der volle Inhalt der QuelleZhang, Zhonglong, Billy Johnson und Blair Greimann. HEC-RAS-RVSM (Riparian Vegetation Simulation Module). Engineer Research and Development Center (U.S.), Juni 2019. http://dx.doi.org/10.21079/11681/32864.
Der volle Inhalt der QuelleWenren, Yonghu, Joon Lim, Luke Allen, Robert Haehnel und Ian Dettwiler. Helicopter rotor blade planform optimization using parametric design and multi-objective genetic algorithm. Engineer Research and Development Center (U.S.), Dezember 2022. http://dx.doi.org/10.21079/11681/46261.
Der volle Inhalt der QuelleKo, Yu-Fu, und Jessica Gonzalez. Fiber-Based Seismic Damage and Collapse Assessment of Reinforced Concrete Single-Column Pier-Supported Bridges Using Damage Indices. Mineta Transportation Institute, August 2023. http://dx.doi.org/10.31979/mti.2023.2241.
Der volle Inhalt der QuelleBerger, AnnMarie. Ride Motion Simulator (RMS) Testing Using Human Occupants (Submitted to Human Use Committee). Fort Belvoir, VA: Defense Technical Information Center, Dezember 1994. http://dx.doi.org/10.21236/ada292641.
Der volle Inhalt der QuelleBerger, AnnMarie. Ride Motion Simulator (RMS) Testing Using Human Occupants (Submitted to Human Use Committee). Fort Belvoir, VA: Defense Technical Information Center, Dezember 1994. http://dx.doi.org/10.21236/ada292750.
Der volle Inhalt der QuelleO'Brien, James G., Emily L. Barrett, Xiaoyuan Fan, Ruisheng Diao, Renke Huang und Qiuhua Huang. Adaptive RAS/SPS System Settings for Improving Grid Reliability and Asset Utilization through Predictive Simulation and Controls. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1580707.
Der volle Inhalt der QuelleChristie, Benjamin, Osama Ennasr und Garry Glaspell. Autonomous navigation and mapping in a simulated environment. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42006.
Der volle Inhalt der QuelleGibson, Stanford, und James Crain. Modeling sediment concentrations during a drawdown reservoir flush : simulating the Fall Creek operations with HEC-RAS. Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33884.
Der volle Inhalt der Quelle