Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Rational.

Zeitschriftenartikel zum Thema „Rational“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Rational" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cunliffe, John. „The Liberal Rationale of ‘Rational Socialism’“. Political Studies 36, Nr. 4 (Dezember 1988): 653–62. http://dx.doi.org/10.1111/j.1467-9248.1988.tb00254.x.

Der volle Inhalt der Quelle
Annotation:
This article draws attention to the ideas of an unduly neglected Belgian thinker, Hippolyte Colins. From the 1830s, Colins addressed many issues in the political theory of property, especially problems of interpersonal, intergenerational and inter-societal justice. His ideas are discussed in the first section. A critical examination of his arguments about justified property regimes enables contemporary disputes (notably in the work of Nozick and Steiner) to be placed in a fresh perspective, offered in the second section. This locates the difficulty of distinguishing between liberal and socialist commitments to particular property systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dykes, James R. „A Rational Rationale for Experimental Psychology“. Contemporary Psychology: A Journal of Reviews 34, Nr. 10 (Oktober 1989): 934. http://dx.doi.org/10.1037/030669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ghasrodashti, Elahe, Nidthida Lin, Ralf Wilden, Francesco Chirico und Dawn DeTienne. „Do Rational Entrepreneurs Exit Rationally?“ Academy of Management Proceedings 2021, Nr. 1 (August 2021): 14133. http://dx.doi.org/10.5465/ambpp.2021.14133abstract.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

McGregor, John C. „Breast reduction – rationed or rational?“ British Journal of Plastic Surgery 52, Nr. 6 (September 1999): 511. http://dx.doi.org/10.1054/bjps.1999.3177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Duckett, S. J. „Rational care before rationed care“. Internal Medicine Journal 32, Nr. 11 (16.10.2002): 533–34. http://dx.doi.org/10.1046/j.1445-5994.2002.00293.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brooks, P. „Rational care before rationed care“. Internal Medicine Journal 33, Nr. 4 (April 2003): 210. http://dx.doi.org/10.1046/j.1445-5994.2003.00382.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

., Jyoti. „Rational Numbers“. Journal of Advances and Scholarly Researches in Allied Education 15, Nr. 5 (01.07.2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tepic, Slobodan, Kent Harrington und Otto Lanz. „Biomechanical Rationale and Rational Planning for TPLO“. Veterinary and Comparative Orthopaedics and Traumatology 31, S 02 (Juli 2018): A1—A25. http://dx.doi.org/10.1055/s-0038-1668234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

&NA;. „Rational use of "rationally designed drugs"“. Inpharma Weekly &NA;, Nr. 1389 (Mai 2003): 2. http://dx.doi.org/10.2165/00128413-200313890-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nosratabadi, Hassan. „Rational Shortlist Method with refined rationales“. Mathematical Social Sciences 127 (Januar 2024): 12–18. http://dx.doi.org/10.1016/j.mathsocsci.2023.10.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

CHATTERJEE, Sidharta. „Choice That’s Rational“. Journal of Research, Innovation and Technologies (JoRIT) 1, Nr. 1 (Dezember 2022): 34. http://dx.doi.org/10.57017/jorit.v1.1(1).03.

Der volle Inhalt der Quelle
Annotation:
In this paper, it is about the axiomatic basis of rational choice theory - the theory that is behind making rational choice and decisions. To make rational choices, we would require thinking rationally and understanding the reason and logic behind what makes a choice rational, and how we need to choose rationally. Decisions are made under various circumstances, i.e., under risk, and often under compulsion. In social choice theory, decisions are made by different types of decision making entities, i.e., committees, groups, individuals and collective judgments by various types of organizations, etc. This paper highlights these issues and addresses the fundamental tenets of making rational choices by examining and following the previous workings of experts on this field. As such, it introduces a novel concept and the idea of Social Choice Rationality in choosing what’s rational.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Sinder, Rike. „Der rational turn“. Archiv fuer Rechts- und Sozialphilosophie 108, Nr. 2 (2022): 163. http://dx.doi.org/10.25162/arsp-2022-0009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Makowski, Louis. „Are `Rational Conjectures' Rational?“ Journal of Industrial Economics 36, Nr. 1 (September 1987): 35. http://dx.doi.org/10.2307/2098595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Darwall, Stephen L. „Rational Agent, Rational Act“. Philosophical Topics 14, Nr. 2 (1986): 33–57. http://dx.doi.org/10.5840/philtopics19861422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Hahn, Ulrike, Adam J. L. Harris und Mike Oaksford. „Rational argument, rational inference“. Argument & Computation 4, Nr. 1 (März 2013): 21–35. http://dx.doi.org/10.1080/19462166.2012.689327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Maurer, William. „How the Rational Basis Test Protects Policing for Profit“. University of Michigan Journal of Law Reform, Nr. 54.4 (2021): 839. http://dx.doi.org/10.36646/mjlr.54.4.rational.

Der volle Inhalt der Quelle
Annotation:
Since the police shooting of Michael Brown in 2014 and the civil unrest that followed, numerous lawsuits have challenged laws that use the government’s ability to impose fines and fees for reasons other than the protection of the public. These challenges have usually raised equal protection challenges to these laws—that is, that the laws punish the poor more harshly than others. The challenges have been unsuccessful, largely because courts examine these laws using “rational basis review,” a standard that is highly deferential to the government and one in which the courts themselves are often required to actively advocate for the government’s position. This article explains these challenges, outlines the critiques of rational basis review, and argues that courts should abandon the use of this standard in cases in which punitive sanctions fall more heavily on the poor than others.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

ENSOLI, B. „Rational vaccine strategies against AIDS: background and rationale“. Microbes and Infection 7, Nr. 14 (November 2005): 1445–52. http://dx.doi.org/10.1016/j.micinf.2005.07.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Deveney, James K., und David R. Finston. „Fields of Ga Invariants are Ruled“. Canadian Mathematical Bulletin 37, Nr. 1 (01.03.1994): 37–41. http://dx.doi.org/10.4153/cmb-1994-006-0.

Der volle Inhalt der Quelle
Annotation:
AbstractThe quotient field of the ring of invariants of a rational Ga action on Cn is shown to be ruled. As a consequence, all rational Ga actions on C4 are rationally triangulable. Moreover, if an arbitrary rational Ga action on Cn is doubled to an action of Ga × Ga on C2n, then the doubled action is rationally triangulable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Nielsen, Carsten Krabbe. „On rationally confident beliefs and rational overconfidence“. Mathematical Social Sciences 55, Nr. 3 (Mai 2008): 381–404. http://dx.doi.org/10.1016/j.mathsocsci.2007.09.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

INASAWA, Keita, und Kenji YASUNAGA. „Rational Proofs against Rational Verifiers“. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E100.A, Nr. 11 (2017): 2392–97. http://dx.doi.org/10.1587/transfun.e100.a.2392.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kőhegyi, Gergely. „Rational deconstruction of rational reconstruction“. Periodica Polytechnica Social and Management Sciences 20, Nr. 1 (2012): 55. http://dx.doi.org/10.3311/pp.so.2012-1.06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Slote, Michael. „Rational Dilemmas and Rational Supererogation“. Philosophical Topics 14, Nr. 2 (1986): 59–76. http://dx.doi.org/10.5840/philtopics19861423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Blickle, Manuel, und Helene Esnault. „Rational Singularities and Rational Points“. Pure and Applied Mathematics Quarterly 4, Nr. 3 (2008): 729–42. http://dx.doi.org/10.4310/pamq.2008.v4.n3.a5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Schwartz, Ryan, József Solymosi und Frank Zeeuw. „RATIONAL DISTANCES WITH RATIONAL ANGLES“. Mathematika 58, Nr. 2 (28.11.2011): 409–18. http://dx.doi.org/10.1112/s0025579311001847.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Caplan, Bryan. „Rational Ignorance versus Rational Irrationality“. Kyklos 54, Nr. 1 (Februar 2001): 3–26. http://dx.doi.org/10.1111/1467-6435.00138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Anzer, Christian. „how rational is rational choice?“ European Political Science 3, Nr. 2 (März 2004): 43–57. http://dx.doi.org/10.1057/eps.2004.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Coleman, Jules L. „Rational Choice and Rational Cognition“. Legal Theory 3, Nr. 2 (Juni 1997): 183–203. http://dx.doi.org/10.1017/s1352325200000720.

Der volle Inhalt der Quelle
Annotation:
There is a close but largely unexplored connection between law and economics and cognitive psychology. Law and economics applies economic models, modes of analysis, and argument to legal problems. Economic theory can be applied to legal problems for predictive, explanatory, or evaluative purposes. In explaining or assessing human action, economic theory presupposes a largely unarticulated account of rational, intentional action. Philosophers typically analyze intentional action in terms of desires and beliefs. I intend to perform some action because I believe that it will (is likely to) produce an outcome that I desire. This standard “belief-desire” model of action invokes what philosophers of psychology and action theorists aptly refer to as a “folk psychology.”
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lávička, Miroslav, und Bohumír Bastl. „Rational hypersurfaces with rational convolutions“. Computer Aided Geometric Design 24, Nr. 7 (Oktober 2007): 410–26. http://dx.doi.org/10.1016/j.cagd.2007.04.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Benassy, Jean-Pascal. „Are rational expectations really rational?“ Economics Letters 39, Nr. 1 (Mai 1992): 49–54. http://dx.doi.org/10.1016/0165-1765(92)90100-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Benassy, Jean-Pascal. „Are rational expectations really rational?“ Economics Letters 40, Nr. 1 (September 1992): 125. http://dx.doi.org/10.1016/0165-1765(92)90255-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hinchman, Edward S. „Rational requirements and ‘rational’ akrasia“. Philosophical Studies 166, Nr. 3 (20.11.2012): 529–52. http://dx.doi.org/10.1007/s11098-012-9993-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Flenner, Hubert, und Mikhail Zaidenberg. „Rational curves and rational singularities“. Mathematische Zeitschrift 244, Nr. 3 (Juli 2003): 549–75. http://dx.doi.org/10.1007/s00209-003-0497-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Trujillo, José. „Rational responses and rational conjectures“. Journal of Economic Theory 36, Nr. 2 (August 1985): 289–301. http://dx.doi.org/10.1016/0022-0531(85)90107-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

McAllister, Patrick H. „Rational behavior and rational expectations“. Journal of Economic Theory 52, Nr. 2 (Dezember 1990): 332–63. http://dx.doi.org/10.1016/0022-0531(90)90036-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Choffrut, Christian. „Rational relations and rational series“. Theoretical Computer Science 98, Nr. 1 (Mai 1992): 5–13. http://dx.doi.org/10.1016/0304-3975(92)90375-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Huguin, Valentin. „Rational maps with rational multipliers“. Journal de l’École polytechnique — Mathématiques 10 (31.03.2023): 591–99. http://dx.doi.org/10.5802/jep.227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

WESTPHAL, KENNETH R. „Rational Justification and Mutual Recognition in Substantive Domains“. Dialogue 53, Nr. 1 (06.12.2013): 57–96. http://dx.doi.org/10.1017/s0012217313000796.

Der volle Inhalt der Quelle
Annotation:
This paper argues that individual rational judgment, of the kind required for rational justification in empirical knowledge or morals, is in fundamental part socially and historically based, although this is consistent with realism about the objects of empirical knowledge and with strict objectivity about basic moral principles. To judge fully rationally that one judges, and thus to justify one’s judgment rationally, requires recognizing one’s inherent fallibility and hence our mutual interdependence for assessing our own and each others’ judgments and their justification. This provides a pragmatic account of rational justification which dispatches the distinction between “rational” and “historical” knowledge.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Siscoe, Robert Weston. „Does Being Rational Require Being Ideally Rational? ‘Rational’ as a Relative and an Absolute Term“. Philosophical Topics 49, Nr. 2 (2021): 245–65. http://dx.doi.org/10.5840/philtopics202149224.

Der volle Inhalt der Quelle
Annotation:
A number of formal epistemologists have argued that perfect rationality requires probabilistic coherence, a requirement that they often claim applies only to ideal agents. However, in “Rationality as an Absolute Concept,” Roy Sorensen contends that ‘rational’ is an absolute term. Just as Peter Unger argued that being flat requires that a surface be completely free of bumps and blemishes, Sorensen claims that being rational requires being perfectly rational. When we combine these two views, though, they lead to counterintuitive results. If being rational requires being perfectly rational, and only the probabilistically coherent are perfectly rational, then this indicts all ordinary agents as irrational. In this paper, I will attempt to resolve this conflict by arguing that Sorensen is only partly correct. One important sense of ‘rational’, the sanctioning sense of ‘rational’, is an absolute term, but another important sense of ‘rational’, the sense in which someone can have rational capacities, is not. I will, then, show that this distinction has important consequences for theorizing about ideal rationality, developing an account of the relationship between ordinary and ideal rationality. Because the sanctioning sense of ‘rational’ is absolute, it is rationally required to adopt the most rational attitude available, but which attitude is most rational can change depending on whether we are dealing with ideal agents or people more like ourselves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dujella, Andrej, Matija Kazalicki und Vinko Petričević. „Rational Diophantine sextuples containing two regular quadruples and one regular quintuple“. Acta mathematica Spalatensia 1, Nr. 1 (04.01.2021): 19–27. http://dx.doi.org/10.32817/ams.1.1.2.

Der volle Inhalt der Quelle
Annotation:
A set of m distinct nonzero rationals {a1,a2,…,am} such that aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m, is called a rational Diophantine m-tuple. It is proved recently that there are infinitely many rational Diophantine sextuples. In this paper, we construct infinite families of rational Diophantine sextuples with special structure, namely the sextuples containing quadruples and quintuples of certain type.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Chenger, Denise, George Jergeas und Francis Hartman. „Executive-level Capital Project Decision Making: Rational or Rationale?“ International Journal of Sustainability Policy and Practice 8, Nr. 3 (2013): 65–74. http://dx.doi.org/10.18848/2325-1166/cgp/v08i03/55388.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Austin, Heather, Kevin C. Smith und Wendy L. Ward. „Bariatric surgery in adolescents: What's the rationale? What's rational?“ International Review of Psychiatry 24, Nr. 3 (Juni 2012): 254–61. http://dx.doi.org/10.3109/09540261.2012.678815.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Smith, Karen E. „F-rational rings have rational singularities“. American Journal of Mathematics 119, Nr. 1 (1997): 159–80. http://dx.doi.org/10.1353/ajm.1997.0007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Shulock, N. „Legislatures: Rational Systems or Rational Myths?“ Journal of Public Administration Research and Theory 8, Nr. 3 (01.07.1998): 299–324. http://dx.doi.org/10.1093/oxfordjournals.jpart.a024386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wang, Huaxiong. „On rational series and rational languages“. Theoretical Computer Science 205, Nr. 1-2 (September 1998): 329–36. http://dx.doi.org/10.1016/s0304-3975(98)00103-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

de Sousa, Ronald. „Rational analysis: Too rational for comfort?“ Behavioral and Brain Sciences 14, Nr. 3 (September 1991): 492. http://dx.doi.org/10.1017/s0140525x00070874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

ITZYKSON, C. „COUNTING RATIONAL CURVES ON RATIONAL SURFACES“. International Journal of Modern Physics B 08, Nr. 25n26 (November 1994): 3703–24. http://dx.doi.org/10.1142/s0217979294001603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Georgiev, Georgi Hristov. „Rational Generalized Offsets of Rational Surfaces“. Mathematical Problems in Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/618148.

Der volle Inhalt der Quelle
Annotation:
The rational surfaces and their offsets are commonly used in modeling and manufacturing. The purpose of this paper is to present relationships between rational surfaces and orientation-preserving similarities of the Euclidean 3-space. A notion of a similarity surface offset is introduced and applied to different constructions of rational generalized offsets of a rational surface. It is shown that every rational surface possesses a rational generalized offset. Rational generalized focal surfaces are also studied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Knopf, Jeffrey W. „How Rational Is “The Rational Public”?“ Journal of Conflict Resolution 42, Nr. 5 (Oktober 1998): 544–71. http://dx.doi.org/10.1177/0022002798042005002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Aleksiadis, N. Ph. „Rational A-functions with rational coefficients“. Chebyshevskii Sbornik 23, Nr. 4 (2022): 11–19. http://dx.doi.org/10.22405/2226-8383-2022-23-4-11-19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Dranishnikov, A. N. „Rational homology manifolds and rational resolutions“. Topology and its Applications 94, Nr. 1-3 (Juni 1999): 75–86. http://dx.doi.org/10.1016/s0166-8641(98)00026-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie