Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Rare earth sesquioxides.

Zeitschriftenartikel zum Thema „Rare earth sesquioxides“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Rare earth sesquioxides" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Petermann, K., G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters und S. A. Basun. „Rare-earth-doped sesquioxides“. Journal of Luminescence 87-89 (Mai 2000): 973–75. http://dx.doi.org/10.1016/s0022-2313(99)00497-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

ZINKEVICH, M. „Thermodynamics of rare earth sesquioxides“. Progress in Materials Science 52, Nr. 4 (Mai 2007): 597–647. http://dx.doi.org/10.1016/j.pmatsci.2006.09.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Granier, Bernard, und Serge Heurtault. „Density of Liquid Rare-Earth Sesquioxides“. Journal of the American Ceramic Society 71, Nr. 11 (November 1988): C466—C468. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07551.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Djuraev, Davron Rakhmonovich, und Mokhigul Madiyorovna Jamilova. „Physical Properties Of Rare Earth Elements“. American Journal of Applied sciences 03, Nr. 01 (30.01.2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Der volle Inhalt der Quelle
Annotation:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rodic, D., B. Antic und M. Mitric. „The rare earth ion distribution in mixed rare earth-yttrium sesquioxides“. Journal of Magnetism and Magnetic Materials 140-144 (Februar 1995): 1181–82. http://dx.doi.org/10.1016/0304-8853(94)01289-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ushakov, Sergey V., Shmuel Hayun, Weiping Gong und Alexandra Navrotsky. „Thermal Analysis of High Entropy Rare Earth Oxides“. Materials 13, Nr. 14 (14.07.2020): 3141. http://dx.doi.org/10.3390/ma13143141.

Der volle Inhalt der Quelle
Annotation:
Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Urban, Marek W., und Bahne C. Cornilsen. „Bonding anomalies in the rare earth sesquioxides“. Journal of Physics and Chemistry of Solids 48, Nr. 5 (Januar 1987): 475–79. http://dx.doi.org/10.1016/0022-3697(87)90108-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bernal, S., F. J. Botana, J. J. Calvino, G. Cifredo, R. García, S. Molina und J. M. Rodríguez-Izquierdo. „HREM characterization of lanthana-supported rhodium catalysts“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 4 (August 1990): 246–47. http://dx.doi.org/10.1017/s0424820100174369.

Der volle Inhalt der Quelle
Annotation:
Metals supported on rare earth sesquioxides present a non- conventional behavior. Ordinary H2 and-or CO chemisorption techniques cannot be straightforwardly used to characterize this group of catalysts. The assessement to the data of metallic dispersions and the establishment of the occurrence and extent of metal-support interaction phenomena are determinant in order to interpret the properties of these catalysts in hydrogenation reactions. In this work HREM is proposed as a powerfull technique for the study of lanthana supported rhodium catalysts. Such catalysts would be considered as representative of a series of metals supported on rare earth sesquioxides.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fedorov, P. P., M. V. Nazarkin und R. M. Zakalyukin. „On polymorphism and morphotropism of rare earth sesquioxides“. Crystallography Reports 47, Nr. 2 (März 2002): 281–86. http://dx.doi.org/10.1134/1.1466504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sahu, P. Ch, Dayana Lonappan und N. V. Chandra Shekar. „High Pressure Structural Studies on Rare-Earth Sesquioxides“. Journal of Physics: Conference Series 377 (30.07.2012): 012015. http://dx.doi.org/10.1088/1742-6596/377/1/012015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Zelmon, David E., Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov und Klaus Petermann. „Temperature-dependent Sellmeier equations for rare-earth sesquioxides“. Applied Optics 52, Nr. 16 (30.05.2013): 3824. http://dx.doi.org/10.1364/ao.52.003824.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mikami, Masayoshi, und Shinichiro Nakamura. „Electronic structure of rare-earth sesquioxides and oxysulfides“. Journal of Alloys and Compounds 408-412 (Februar 2006): 687–92. http://dx.doi.org/10.1016/j.jallcom.2005.01.068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Kränkel, Christian, Anastasia Uvarova, Christo Guguschev, Sascha Kalusniak, Lena Hülshoff, Hiroki Tanaka und Detlef Klimm. „Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited]“. Optical Materials Express 12, Nr. 3 (15.02.2022): 1074. http://dx.doi.org/10.1364/ome.450203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Polfus, Jonathan M., Truls Norby und Reidar Haugsrud. „Nitrogen defects from NH3in rare-earth sesquioxides and ZrO2“. Dalton Trans. 40, Nr. 1 (2011): 132–35. http://dx.doi.org/10.1039/c0dt01068e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kimura, Shin-ichi, Fumitaka Arai und Mikihiko Ikezawa. „Optical Study on Electronic Structure of Rare-Earth Sesquioxides“. Journal of the Physical Society of Japan 69, Nr. 10 (15.10.2000): 3451–57. http://dx.doi.org/10.1143/jpsj.69.3451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Dilawar, Nita, Deepak Varandani, Shalini Mehrotra, Himanshu K. Poswal, Surinder M. Sharma und Ashis K. Bandyopadhyay. „Anomalous high pressure behaviour in nanosized rare earth sesquioxides“. Nanotechnology 19, Nr. 11 (19.02.2008): 115703. http://dx.doi.org/10.1088/0957-4484/19/11/115703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Norby, Truls, Oddvar Dyrlie und Per Kofstad. „Protonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides“. Journal of the American Ceramic Society 75, Nr. 5 (Mai 1992): 1176–81. http://dx.doi.org/10.1111/j.1151-2916.1992.tb05556.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Shah, Sameera, Tobias Pietsch, Maria Annette Herz, Franziska Jach und Michael Ruck. „Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids“. Chemistry 5, Nr. 2 (02.06.2023): 1378–94. http://dx.doi.org/10.3390/chemistry5020094.

Der volle Inhalt der Quelle
Annotation:
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Ben Salem, M., und B. Yangui. „Domain Structures in Ferroelastic Materials: Case of Rare Earth Sesquioxides“. Key Engineering Materials 101-102 (März 1995): 61–94. http://dx.doi.org/10.4028/www.scientific.net/kem.101-102.61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Arai, Fumitaka, Shin-ichi Kimura und Mikihiko Ikezawa. „Resonant Photoemission Study of Electronic Structure of Rare-Earth Sesquioxides“. Journal of the Physical Society of Japan 67, Nr. 1 (15.01.1998): 225–29. http://dx.doi.org/10.1143/jpsj.67.225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Dilawar, Nita, Shalini Mehrotra, D. Varandani, B. V. Kumaraswamy, S. K. Haldar und A. K. Bandyopadhyay. „A Raman spectroscopic study of C-type rare earth sesquioxides“. Materials Characterization 59, Nr. 4 (April 2008): 462–67. http://dx.doi.org/10.1016/j.matchar.2007.04.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Nagao, Mahiko, Hideaki Hamano, Koji Hirata, Ryotaro Kumashiro und Yasushige Kuroda. „Hydration Process of Rare-Earth Sesquioxides Having Different Crystal Structures“. Langmuir 19, Nr. 22 (Oktober 2003): 9201–9. http://dx.doi.org/10.1021/la020954y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Tang, M., J. A. Valdez, K. E. Sickafus und P. Lu. „Order-disorder phase transformation in ion-irradiated rare earth sesquioxides“. Applied Physics Letters 90, Nr. 15 (09.04.2007): 151907. http://dx.doi.org/10.1063/1.2720716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Salem, M. Ben, B. Yangui, G. Schiffmacher und C. Boulesteix. „Twinning of the hexagonal (A) structure of rare earth sesquioxides“. physica status solidi (a) 87, Nr. 2 (16.02.1985): 527–36. http://dx.doi.org/10.1002/pssa.2210870214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kriklya, A. I. „High-temperature heat capacity of sesquioxides of rare-earth metals“. Powder Metallurgy and Metal Ceramics 38, Nr. 5-6 (Mai 1999): 274–77. http://dx.doi.org/10.1007/bf02675775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Fellner, Madeleine, Alberto Soppelsa und Alessandro Lauria. „Heat-Induced Transformation of Luminescent, Size Tuneable, Anisotropic Eu:Lu(OH)2Cl Microparticles to Micro-Structurally Controlled Eu:Lu2O3 Microplatelets“. Crystals 11, Nr. 8 (20.08.2021): 992. http://dx.doi.org/10.3390/cryst11080992.

Der volle Inhalt der Quelle
Annotation:
Synthetic procedures to obtain size and shape-controlled microparticles hold great promise to achieve structural control on the microscale of macroscopic ceramic- or composite-materials. Lutetium oxide is a material relevant for scintillation due to its high density and the possibility to dope with rare earth emitter ions. However, rare earth sesquioxides are challenging to synthesise using bottom-up methods. Therefore, calcination represents an interesting approach to transform lutetium-based particles to corresponding sesquioxides. Here, the controlled solvothermal synthesis of size-tuneable europium doped Lu(OH)2Cl microplatelets and their heat-induced transformation to Eu:Lu2O3 above 800 °C are described. The particles obtained in microwave solvothermal conditions, and their thermal evolution were studied using powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical microscopy, thermogravimetric analysis (TGA), luminescence spectroscopy (PL/PLE) and infrared spectroscopy (ATR-IR). The successful transformation of Eu:Lu(OH)2Cl particles into polycrystalline Eu:Lu2O3 microparticles is reported, together with the detailed analysis of their initial and final morphology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Irshad, K. A., N. V. Chandrashekar und S. Kalavathi. „Polymorphism in rare earth sesquioxides: dependence on pressure and cationic radii“. Acta Crystallographica Section A Foundations and Advances 73, a2 (01.12.2017): C1256. http://dx.doi.org/10.1107/s2053273317083188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lupascu, D., M. Uhrmacher und K. P. Lieb. „Electric field gradients of111Cd in monoclinic (B-phase) rare earth sesquioxides“. Journal of Physics: Condensed Matter 6, Nr. 48 (28.11.1994): 10445–56. http://dx.doi.org/10.1088/0953-8984/6/48/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kolorenč, Jindřich. „Metal-Oxygen Hybridization and Core-Level Spectra in Actinide and Rare-Earth Oxides“. MRS Advances 1, Nr. 44 (2016): 3007–12. http://dx.doi.org/10.1557/adv.2016.403.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT We employ a combination of the density-functional theory and the dynamical mean-field theory to study the electronic structure of selected rare-earth sesquioxides and dioxides. We concentrate on the core-level photoemission spectra, in particular, we illustrate how these spectra reflect the integer or fractional filling of the 4f orbitals. We compare the results to our earlier calculations of actinide dioxides and analyze why the core-level spectra of actinide compounds display a substantially reduced sensitivity to the filling of the 5f orbitals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tang, M., P. Lu, J. A. Valdez und K. E. Sickafus. „Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)“. Journal of Applied Physics 99, Nr. 6 (15.03.2006): 063514. http://dx.doi.org/10.1063/1.2184433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bezzine, K., N. Benayad, M. Djermouni, S. Kacimi und A. Zaoui. „Enhanced d0 ferromagnetism via carbon doping in rare-earth sesquioxides: DFT prediction“. Journal of Magnetism and Magnetic Materials 563 (Dezember 2022): 169910. http://dx.doi.org/10.1016/j.jmmm.2022.169910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bernal, S., F. J. Botana, R. García und J. M. Rodríguez-Izquierdo. „Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water“. Reactivity of Solids 4, Nr. 1-2 (Oktober 1987): 23–40. http://dx.doi.org/10.1016/0168-7336(87)80085-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hinteregger, Ernst, Michael Enders, Almut Pitscheider, Klaus Wurst, Gunter Heymann und Hubert Huppertz. „High-pressure Syntheses and Characterization of the Rare-earth Fluoride Borates RE2(BO3)F3 (RE=Tb, Dy, Ho)“. Zeitschrift für Naturforschung B 68, Nr. 11 (01.11.2013): 1198–206. http://dx.doi.org/10.5560/znb.2013-3258.

Der volle Inhalt der Quelle
Annotation:
The new rare-earth fluoride borates RE2(BO3)F3 (RE=Tb, Dy, Ho) were synthesized under highpressure/ high-temperature conditions of 1:5 GPa=1200 °C for Tb2(BO3)F3 and 3:0 GPa=900 °C for Dy2(BO3)F3 and Ho2(BO3)F3 in a Walker-type multianvil apparatus from the corresponding rareearth sesquioxides, rare-earth fluorides, and boron oxide. The single-crystal structure determinations revealed that the new compounds are isotypic to the known rare-earth fluoride borate Gd2(BO3)F3. The new rare-earth fluoride borates crystallize in the monoclinic space group P21/c (Z = 8) with the lattice parameters a=16:296(3), b=6:197(2), c=8:338(2) Å , b =93:58(3)° for Tb2(BO3)F3, a= 16:225(3), b = 6:160(2), c = 8:307(2) Å , b = 93:64(3)° for Dy2(BO3)F3, and a = 16:189(3), b = 6:124(2), c = 8:282(2) Å , β= 93:69(3)° for Ho2(BO3)F3. The four crystallographically different rare-earth cations (CN=9) are surrounded by oxygen and fluoride anions. All boron atoms form isolated trigonal-planar [BO3]3- groups. The six crystallographically different fluoride anions are in a nearly planar coordination by three rare-earth cations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Dilawar Sharma, Nita, Jasveer Singh, Aditi Vijay, K. Samanta, S. Dogra und A. K. Bandyopadhyay. „Pressure-Induced Structural Transition Trends in Nanocrystalline Rare-Earth Sesquioxides: A Raman Investigation“. Journal of Physical Chemistry C 120, Nr. 21 (23.05.2016): 11679–89. http://dx.doi.org/10.1021/acs.jpcc.6b02104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Antic, B., A. Kremenovic, I. Draganic, Ph Colomban, D. Vasiljevic-Radovic, J. Blanusa, M. Tadic und M. Mitric. „Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides“. Applied Surface Science 255, Nr. 17 (Juni 2009): 7601–4. http://dx.doi.org/10.1016/j.apsusc.2009.04.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Kimmel, Giora, Roni Z. Shneck, Witold Lojkowski, Ze'ev Porat, Tadeusz Chudoba, Dmitry Mogilyanski, Stanislaw Gierlotka, Vladimir Ezersky und Jacob Zabicky. „Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale“. Journal of the American Ceramic Society 102, Nr. 7 (18.03.2019): 3829–35. http://dx.doi.org/10.1111/jace.16396.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Sattonnay, G., S. Bilgen, L. Thomé, C. Grygiel, I. Monnet, O. Plantevin, C. Huet, S. Miro und P. Simon. „Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation“. physica status solidi (b) 253, Nr. 11 (01.08.2016): 2110–14. http://dx.doi.org/10.1002/pssb.201600451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Frayret, Christine, Antoine Villesuzanne, Michel Pouchard, Fabrice Mauvy, Jean Marc Bassat und Jean Claude Grenier. „A Density Functional Study of Oxygen Mobility in Ceria-Based Materials“. Defect and Diffusion Forum 323-325 (April 2012): 233–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.323-325.233.

Der volle Inhalt der Quelle
Annotation:
In CeO2-based solid electrolytes, it has been shown that point defects are directly responsible for oxygen ionic conduction. The ionic conductivity is strongly affected by the anion vacancy concentration which is enhanced by doping with aliovalent cations. When rare earth sesquioxides such as La2O3, Gd2O3, Sm2O3, Y2O3 are added to CeO2, the dopant cation substitutes for the cerium ion, and oxygen vacancies are created for charge compensation. Incorporation of trivalent dopants into CeO2 at the Ce4+ sites can be depicted by the following defect reaction (expressed in Kröger-Vink notation):
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Guo, Bing, Ashley S. Harvey, John Neil, Ian M. Kennedy, Alexandra Navrotsky und Subhash H. Risbud. „Atmospheric Pressure Synthesis of Heavy Rare Earth Sesquioxides Nanoparticles of the Uncommon Monoclinic Phase“. Journal of the American Ceramic Society 90, Nr. 11 (November 2007): 3683–86. http://dx.doi.org/10.1111/j.1551-2916.2007.01961.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Boulesteix, C., M. Ben Salem und B. Yangui. „Domain structures and plasticity of ferroelastic materials: Case of rare earth sesquioxides and YBa2Cu3O7“. Journal of the Less Common Metals 156, Nr. 1-2 (Dezember 1989): 29–41. http://dx.doi.org/10.1016/0022-5088(89)90404-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Balamurugan, Sarkarainadar, Ute Ch Rodewald, Thomas Harmening, Leo van Wüllen, Daniel Mohr, Heinz Deters, Hellmut Eckert und Rainer Pöttgen. „PbO / PbF2 Flux Growth of YScO3 and LaScO3 Single Crystals – Structure and Solid-State NMR Spectroscopy“. Zeitschrift für Naturforschung B 65, Nr. 10 (01.10.2010): 1199–205. http://dx.doi.org/10.1515/znb-2010-1004.

Der volle Inhalt der Quelle
Annotation:
Well-shaped small single crystals of the orthorhombic perovskites YScO3 and LaScO3 were grown from mixtures of the corresponding sesquioxides RE2O3 in PbO/PbF2 fluxes. Both structures were refined from single-crystal diffractometer data: GdFeO3-type, Pnma, a = 570.68(7), b = 789.3(1), c = 542.44(7) pm, wR2 = 0.0363, 448 F2 values for Y0.96ScO2.94, and a = 579.68(9), b = 810.3(2), c = 568.3(1) pm, wR2 = 0.0387, 513 F2 values for La0.94ScO2.91, with 32 variables per refinement. The 4c rare-earth sites of both perovskites show small defects which are charge-compensated by defects on both oxygen sites, leading to the compositions La0.94ScO2.91 and Y0.96ScO2.94 for the investigated crystals. The rare-earth sites have been characterized by 89Y and 45Sc magic-angle spinning (MAS) NMR. The 45Sc quadrupolar interaction parameters extracted from these spectra by simulations are found to be in good agreement with those obtained from DFT calculations of the electric field gradient.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Feng, Xiao, Chunmei Jia, Jing Wang, Xiaocong Cao, Panjuan Tang und Wenbing Yuan. „Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates“. Green Chemistry 17, Nr. 7 (2015): 3740–45. http://dx.doi.org/10.1039/c5gc00378d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Niehle, Michael, und Achim Trampert. „Atomic interface structure of bixbyite rare-earth sesquioxides grown epitaxially on Si(1 1 1)“. Journal of Physics D: Applied Physics 45, Nr. 29 (02.07.2012): 295302. http://dx.doi.org/10.1088/0022-3727/45/29/295302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Novoselov, A., J. H. Mun, R. Simura, A. Yoshikawa und T. Fukuda. „Micro-pulling-down: A viable approach to the crystal growth of refractory rare-earth sesquioxides“. Inorganic Materials 43, Nr. 7 (Juli 2007): 729–34. http://dx.doi.org/10.1134/s0020168507070114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Singh, Nirpendra, Sapan Mohan Saini, Tashi Nautiyal und Sushil Auluck. „Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd)“. Journal of Applied Physics 100, Nr. 8 (15.10.2006): 083525. http://dx.doi.org/10.1063/1.2353267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

SAIKI, Atsushi, Nobuo ISHIZAWA, Nobuyasu MIZUTANI und Masanori KATO. „Structural Change of C-Rare Earth Sesquioxides Yb2O3 and Er2O3 as a Function of Temperature“. Journal of the Ceramic Association, Japan 93, Nr. 1082 (1985): 649–54. http://dx.doi.org/10.2109/jcersj1950.93.1082_649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Meena, Seema Kumari, Lekhraj Meena, N. L. Heda und B. L. Ahuja. „High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3“. Radiation Physics and Chemistry 176 (November 2020): 108990. http://dx.doi.org/10.1016/j.radphyschem.2020.108990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Abrashev, M. V., N. D. Todorov und J. Geshev. „Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study“. Journal of Applied Physics 116, Nr. 10 (14.09.2014): 103508. http://dx.doi.org/10.1063/1.4894775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Galenin, Evgeny, Viktoriia Galenina, Iaroslav Gerasymov, Daniil Kurtsev, Serhii Tkachenko, Pavlo Arhipov, Sofiia Sadivnycha et al. „Growth of Sesquioxide Crystals from Tungsten Crucibles by Vertical Gradient Freezing Method“. Crystals 13, Nr. 4 (31.03.2023): 591. http://dx.doi.org/10.3390/cryst13040591.

Der volle Inhalt der Quelle
Annotation:
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y2O3 and Y2−xScxO3 crystals by the Vertical Gradient Freezing method from tungsten crucibles, proposing an alternative to extremely expensive rhenium and iridium crucibles. Translucent Y2O3 samples are obtained, and their luminescent and scintillation parameters are evaluated. The main issues of Y2O3 crystallization under the proposed conditions are discussed, as well as ways of enhancing the crystal quality. Finally, polymorph transitions are avoided by decreasing the average radius of the rare earth cation by Y3+/Sc3+ substitution, providing transparent Y2−xScxO3 crystals with a cubic structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Maslen, E. N., V. A. Streltsov und N. Ishizawa. „A synchrotron X-ray study of the electron density in C-type rare earth oxides“. Acta Crystallographica Section B Structural Science 52, Nr. 3 (01.06.1996): 414–22. http://dx.doi.org/10.1107/s0108768195013371.

Der volle Inhalt der Quelle
Annotation:
Structure factors for small synthetic crystals of the C-type rare earth (RE) sesquioxides Y2O3, Dy2O3 and Ho2O3 were measured with focused λ = 0.7000 (2) Å, synchrotron X-radiation, and for Ho2O3 were re-measured with an MoKα (λ = 0.71073 Å) source. Approximate symmetry in the deformation electron density (Δρ) around a RE atom with pseudo-octahedral O coordination matches the cation geometry. Interactions between heavy metal atoms have a pronounced effect on the Δρ map. The electron-density symmetry around a second RE atom is also perturbed significantly by cation–anion interactions. The compounds magnetic properties reflect this complexity. Space group Ia{\bar 3}, cubic, Z = 16, T = 293 K: Y2O3, Mr = 225.82, a = 10.5981 (7) Å, V = 1190.4 (2) Å3, Dx = 5.040 Mg m−3, μ 0.7 = 37.01 mm−1, F(000) = 1632, R = 0.067, wR = 0.067, S = 9.0 (2) for 1098 unique reflections; Dy2O3, Mr = 373.00, a = 10.6706 (7) Å, V = 1215.0 (2) Å3, Dx = 8.156 Mg m−3, μ 0.7 = 44.84 mm−1, F(000) = 2496, R = 0.056, wR = 0.051, S = 7.5 (2) for 1113 unique reflections; Ho2O3, Mr = 377.86, a = 10.606 (2) Å, V = 1193.0 (7) Å3, Dx = 8.415 Mg m−3, μ 0.7 = 48.51 mm−1 F(000) = 2528, R = 0.072, wR = 0.045, S = 9.2 (2) for 1098 unique reflections of the synchrotron data set.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie