Auswahl der wissenschaftlichen Literatur zum Thema „Rare earth sesquioxides“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rare earth sesquioxides" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Rare earth sesquioxides"

1

Petermann, K., G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters und S. A. Basun. „Rare-earth-doped sesquioxides“. Journal of Luminescence 87-89 (Mai 2000): 973–75. http://dx.doi.org/10.1016/s0022-2313(99)00497-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

ZINKEVICH, M. „Thermodynamics of rare earth sesquioxides“. Progress in Materials Science 52, Nr. 4 (Mai 2007): 597–647. http://dx.doi.org/10.1016/j.pmatsci.2006.09.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Granier, Bernard, und Serge Heurtault. „Density of Liquid Rare-Earth Sesquioxides“. Journal of the American Ceramic Society 71, Nr. 11 (November 1988): C466—C468. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07551.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Djuraev, Davron Rakhmonovich, und Mokhigul Madiyorovna Jamilova. „Physical Properties Of Rare Earth Elements“. American Journal of Applied sciences 03, Nr. 01 (30.01.2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Der volle Inhalt der Quelle
Annotation:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rodic, D., B. Antic und M. Mitric. „The rare earth ion distribution in mixed rare earth-yttrium sesquioxides“. Journal of Magnetism and Magnetic Materials 140-144 (Februar 1995): 1181–82. http://dx.doi.org/10.1016/0304-8853(94)01289-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ushakov, Sergey V., Shmuel Hayun, Weiping Gong und Alexandra Navrotsky. „Thermal Analysis of High Entropy Rare Earth Oxides“. Materials 13, Nr. 14 (14.07.2020): 3141. http://dx.doi.org/10.3390/ma13143141.

Der volle Inhalt der Quelle
Annotation:
Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Urban, Marek W., und Bahne C. Cornilsen. „Bonding anomalies in the rare earth sesquioxides“. Journal of Physics and Chemistry of Solids 48, Nr. 5 (Januar 1987): 475–79. http://dx.doi.org/10.1016/0022-3697(87)90108-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bernal, S., F. J. Botana, J. J. Calvino, G. Cifredo, R. García, S. Molina und J. M. Rodríguez-Izquierdo. „HREM characterization of lanthana-supported rhodium catalysts“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 4 (August 1990): 246–47. http://dx.doi.org/10.1017/s0424820100174369.

Der volle Inhalt der Quelle
Annotation:
Metals supported on rare earth sesquioxides present a non- conventional behavior. Ordinary H2 and-or CO chemisorption techniques cannot be straightforwardly used to characterize this group of catalysts. The assessement to the data of metallic dispersions and the establishment of the occurrence and extent of metal-support interaction phenomena are determinant in order to interpret the properties of these catalysts in hydrogenation reactions. In this work HREM is proposed as a powerfull technique for the study of lanthana supported rhodium catalysts. Such catalysts would be considered as representative of a series of metals supported on rare earth sesquioxides.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fedorov, P. P., M. V. Nazarkin und R. M. Zakalyukin. „On polymorphism and morphotropism of rare earth sesquioxides“. Crystallography Reports 47, Nr. 2 (März 2002): 281–86. http://dx.doi.org/10.1134/1.1466504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sahu, P. Ch, Dayana Lonappan und N. V. Chandra Shekar. „High Pressure Structural Studies on Rare-Earth Sesquioxides“. Journal of Physics: Conference Series 377 (30.07.2012): 012015. http://dx.doi.org/10.1088/1742-6596/377/1/012015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Rare earth sesquioxides"

1

Biswas, Koushik. „Liquid phase sintering of SiC ceramics with rare earth sesquioxides“. [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10361095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Heuer, Alexander Marc [Verfasser]. „Rare-Earth-Doped Sesquioxides for Lasers in the Mid-Infrared Spectral Range / Alexander Marc Heuer“. Aachen : Shaker, 2018. http://d-nb.info/118658999X/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kuzminykh, Yury. „Crystalline, rare-earth-doped sesquioxide and YAG PLD-films“. [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981073182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Delaunay, Florian. „Élaboration de céramiques transparentes d’oxydes de terres rares pour l’optique : Étude de nouveaux additifs de frittage à base de fluor et synthèse de nanopoudres par réacteur continu“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0102.

Der volle Inhalt der Quelle
Annotation:
Ces travaux de thèse portent sur l’élaboration de céramiques transparentes pour des applications lasers comme milieu amplificateur, absorbant saturable ou scintillateur. Les composés étudiés sont les grenats et sesquioxydes de terres rares qui présentent d’excellentes propriétés thermomécaniques. Dans un premier chapitre, l’impact du fluor et de ses dérivés sur les mécanismes de frittage naturel de sesquioxydes de terres rares (Y2O3, Lu2O3) a été étudié. Au final, des céramiques transparentes de Y2O3 et Lu2O3 dopées à l’holmium ont été élaborées par frittage sous charge et leurs propriétés spectroscopiques étudiées. Dans un second chapitre, des nanopoudres de YAG ont été élaborées par la voie chimique de coprécipitation. Une étude des paramètres de synthèse a été menée afin de déterminer les meilleures conditions dans le but de synthétiser des poudres de YAG pures, fines et homogènes à l’aide d’un réacteur batch. Par la suite, ce procédé de synthèse a été transposé à l’utilisation d’un réacteur continu de type piston. L’influence du type de réacteur sur la pureté et la morphologie des nanopoudres de YAG synthétisées a été étudiée. Enfin, l’étude du comportement au frittage des nanopoudres ainsi obtenues a permis l’obtention de céramiques transparentes de YAG
This thesis focuses on the development of transparent ceramics for laser applications as laser amplifiers, saturable absorbers or scintillators. The compounds studied are rare earth garnets and sesquioxides, which have excellent thermomechanical properties. In a first chapter, the impact of fluorine and its derivatives on the natural sintering mechanisms of rare earth sesquioxides (Y2O3, Lu2O3) was studied. Ultimately, transparent ceramics of Y2O3 and Lu2O3 doped with holmium were produced by pressure sintering and their spectroscopic properties studied. In a second chapter, YAG nanopowders were produced by the chemical coprecipitation route. A study of the synthesis parameters was carried out in order to determine the best conditions in order to synthesize pure, fine and homogeneous YAG powders using a batch reactor. Subsequently, this synthesis process was transposed to the use of a continuous piston-type reactor. The influence of the reactor type on the purity and morphology of the synthesized YAG nanopowders was studied. Finally, the study of the sintering behavior of the nanopowders thus obtained made it possible to obtain transparent YAG ceramics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Waeselmann, Sven H. [Verfasser]. „Waveguiding and Laser Action in Rare-Earth-Doped Sesquioxide and Sapphire Films / Sven H. Waeselmann“. München : Verlag Dr. Hut, 2016. http://d-nb.info/1113335122/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Biswas, Koushik [Verfasser]. „Liquid phase sintering of SiC ceramics with rare earth sesquioxides / vorgelegt von Koushik Biswas“. 2003. http://d-nb.info/966417690/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kuzminykh, Yury [Verfasser]. „Crystalline, rare-earth-doped sesquioxide and YAG PLD-films / vorgelegt von Yury Kuzminykh“. 2006. http://d-nb.info/981073182/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Abreu, Elsa. „Electronic and structural dynamics of vanadates and nickelates: effect of temperature, strain and photoexcitation“. Thesis, 2014. https://hdl.handle.net/2144/15110.

Der volle Inhalt der Quelle
Annotation:
The scientific relevance and potential for technological applications of complex materials have made them the focus of active investigation in order to fully charac- terize the competition and interactions between their electronic, structural, orbital, and spin degrees of freedom. Optical and terahertz (THz) spectroscopy provide ac- cess to electronic and low frequency quasiparticle responses, and therefore play a key role in understanding the fundamental mechanisms which dictate the macroscopic properties of complex materials. Time-resolved experiments, in turn, have the po- tential to disentangle the various coexisting energy scales through a careful selection of the pump and probe characteristics. This work investigates the role played by the electronic, structural and magnetic excitations in the insulator-to-metal transi- tions (IMT) of VO2, V2O3 and NdNiO3, through studies under different conditions of temperature, strain, doping and photoexcitation. Our work shows that a complete understanding of the IMT in VO2 requires sev- eral length scales and time scales to be considered. Indeed, epitaxial strain leads to anisotropy in the IMT characteristics of thin films of (100) and (110) VO2/TiO2, measured using THz spectroscopy, which can be explained by strain induced modi- fications both in the (microscopic) V3d orbitals and in the geometry of mesoscopic metallic domains. On the other hand, ultrafast studies which track, with femtosecond resolution, the electronic and structural dynamics of VO2 thin films following THz excitation reveal a delay in the onset of the structural response with respect to the electronic one, lending support to the correlation rather than Peierls driven picture of the IMT in this material. As for V2O3, the IMT is seen to occur via nucleation and growth of metallic domains, as previously reported in VO2. However, a scaling of the photoinduced conductivity dynamics rise time is further identified, which reveals the temperature and fluence dependence of the nucleation and growth process. Finally, strained NdNiO3 films exhibit a two step dynamical conductivity response following optical excitation, different from that of the vanadates with which they share a complex, albeit more tunable, phase diagram. This hints at a significant role being played by the magnetic structure during the IMT in NdNiO3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Rare earth sesquioxides"

1

Atou, T., K. Kusaba, Y. Syono, T. Kikegawa und H. Iwasaki. „Pressure-Induced Phase Transition in Rare Earth Sesquioxides“. In High-Pressure Research: Application to Earth and Planetary Sciences, 469–75. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm067p0469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Courcot, E., F. Rebillat und F. Teyssandier. „Thermochemical Stability of Rare Earth Sesquioxides Under a Moist Environment at High Temperature“. In Ceramic Transactions Series, 257–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470909836.ch24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Antoinette, Morris Marieli, und Sujin P. Jose. „Luminescent Properties of Pure and Lanthanide Doped Rare Earth Sesquioxide Nanoparticles“. In Functional Nanocomposites and Their Applications, 241–65. Boca Raton: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003412748-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Salem, M. Ben, B. Yangui, G. Schiffmacheb und C. Boulesteix. „Twinning of the Hexagonal (A) Structure of Rare Earth Sesquioxides“. In February 16, 527–36. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112497586-013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Rare earth sesquioxides"

1

Chandra Shekar, N. V., A. Arulraj, N. R. Sanjay Kumar, C. Ravi, M. Sekar und P. Ch Sahu. „Strutural phase transitions in rare earth sesquioxides under pressure“. In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fleischman, Zackery D., Ei Brown, Mark Dubinskii, Shyam Bayya, Woohong Kim, Jas Sanghera und Tony Zhou. „Ceramic rare earth-doped sesquioxides for infrared laser sources“. In Laser Technology for Defense and Security XVII, herausgegeben von Mark Dubinskii, Lawrence Grimes und Rita D. Peterson. SPIE, 2022. http://dx.doi.org/10.1117/12.2622503.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Atou, T., M. Kikuchi, K. Fukuoka und Y. Syona. „Shock-induced phase transition of scandium sesquioxide: Geometric factor governing high pressure transitions on rare earth sesquioxides“. In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yang, Jun. „Applications of FT-IR emission spectroscopy for superconductor YBa2Cu3 Ox and rare earth sesquioxides“. In International Conference on Optoelectronic Science and Engineering '90. SPIE, 1990. http://dx.doi.org/10.1117/12.2294828.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Petermann, K. „Rare-earth-ion-doped sesquioxide laser materials“. In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Takaichi, Kazunori, Hideki Yagi, Todor S. Petrov, Masaki Tokurakawa, Akira Shirakawa, Ken-ichi Ueda, Shunsuke Hosokawa, Takagimi Yanagitani, Junji Kawanaka und Alexander A. Kaminskii. „Laser and Spectroscopic Properties of Yb3+-doped Rare-earth Sesquioxide Ceramics“. In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/assp.2005.mb9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Jun, Danlei Yin, Peng Liu, Jie Ma, Ying Wang und D. Y. Tang. „Rare-Earth Doped Sesquioxide Ceramics for Highly Efficient Mid-Infrared Lasers“. In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Takaichi, Kazunori, Hideki Yagi, Todor S. Petrov, Masaki Tokurakawa, Akira Shirakawa, Ken-ichi Ueda, Shunsuke Hosokawa, Takagimi Yanagitani, Junji Kawanaka und Alexander A. Kaminskii. „Laser and Spectroscopic Properties of Yb^3+-doped Rare-earth Sesquioxide Ceramics“. In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/assp.2005.134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lowry, Daniel, Mia Blea, Linda Hansen, James Park, Sean Bishop, Dorina Sava Gallis, Jacob Harvey, Patricia Kalita und Marcus Knudson. „Shock Induced Phase Transitions in a High Entropy Rare Earth Sesquioxide, (La0.2Y0.2Ce0.2Pr0.2Sm0.2)2O3“. In 2023 Shock Compression of Condensed Materials (SHOCK23) - Chicago, Illinois, United States of America - June - 2023. US DOE, 2023. http://dx.doi.org/10.2172/2430906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie