Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Rare earth metals.

Zeitschriftenartikel zum Thema „Rare earth metals“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Rare earth metals" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Djuraev, Davron Rakhmonovich, und Mokhigul Madiyorovna Jamilova. „Physical Properties Of Rare Earth Elements“. American Journal of Applied sciences 03, Nr. 01 (30.01.2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Der volle Inhalt der Quelle
Annotation:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Giacalone, Joseph A. „The Market For The "Not-So-Rare" Rare Earth Elements“. Journal of International Energy Policy (JIEP) 1, Nr. 1 (03.05.2012): 11–18. http://dx.doi.org/10.19030/jiep.v1i1.7013.

Der volle Inhalt der Quelle
Annotation:
This paper examines the market for the Rare earth elements. These are comprised of 17 elements of the periodic table which include 15 elements from the group known as lanthanides and two additional elements known as scandium and yttrium. The metals are often found combined together in ores and must be separated into its individual elements. The fact is that rare earth metals are not rare in terms of the quantity present in the earths crust. However, the metals are less concentrated than other more common metals and the extraction and separation processes necessitate high research and development costs and large capital outlays.The various applications of rare earth elements can be broadly classified into four major categories, namely: High Technology Consumer Products, Environmentally Friendly Products, Industrial and Medical Devices, and National Defense Systems. The demand for such high technology products is rapidly increasing causing a simultaneous upsurge in the demand for rare earth metals as well.On the supply side, China dominates the production rare earth elements, mining approximately 97% of total world production. Consequently, most countries must rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. This near-monopoly imposes several supply-chain risks on the importing nations which are exploring ways to mitigate the potential economic harm associated with these risks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nickels, Liz. „Reclaiming rare earth metals“. Metal Powder Report 75, Nr. 4 (Juli 2020): 189–92. http://dx.doi.org/10.1016/j.mprp.2019.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tárnok, Attila. „Counting rare earth metals“. Cytometry Part A 103, Nr. 8 (August 2023): 618. http://dx.doi.org/10.1002/cyto.a.24784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Johansson, Börje, Lars Nordström, Olle Eriksson und M. S. S. Brooks. „Magnetism in Rare-Earth Metals and Rare-Earth Intermetallic Compounds“. Physica Scripta T39 (01.01.1991): 100–109. http://dx.doi.org/10.1088/0031-8949/1991/t39/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Matakova, Rema, und K. Sagadieva. „Electrochemistry of rare earth metals“. Chemical Bulletin of Kazakh National University, Nr. 2 (15.05.2012): 114. http://dx.doi.org/10.15328/chemb_2012_2114-124.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kurysheva, V. V., E. A. Ivanova und P. E. Prokhorva. „Extractants for rare earth metals“. Chimica Techno Acta 3, Nr. 2 (2016): 97–120. http://dx.doi.org/10.15826/chimtech.2016.3.2.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Netzer, F. P., und J. A. D. Matthew. „Surfaces of rare earth metals“. Reports on Progress in Physics 49, Nr. 6 (01.06.1986): 621–81. http://dx.doi.org/10.1088/0034-4885/49/6/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Silver, G. L. „Reactions of Rare Earth Metals“. Journal of Chemical Education 72, Nr. 10 (Oktober 1995): 956. http://dx.doi.org/10.1021/ed072p956.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Isshiki, Minoru. „Purification of rare earth metals“. Vacuum 47, Nr. 6-8 (Juni 1996): 885–87. http://dx.doi.org/10.1016/0042-207x(96)00087-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ragnarsdóttir, Kristín Vala. „Rare metals getting rarer“. Nature Geoscience 1, Nr. 11 (November 2008): 720–21. http://dx.doi.org/10.1038/ngeo302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Giacalone, Joseph A., und Genai Greenidge. „China, The World Trade Organization, And The Market For Rare Earth Minerals“. International Business & Economics Research Journal (IBER) 12, Nr. 3 (19.02.2013): 257. http://dx.doi.org/10.19030/iber.v12i3.7669.

Der volle Inhalt der Quelle
Annotation:
Rare earth elements (also referred to as rare earth minerals, rare earth metals, green elements, rare earths or simply REEs) are comprised of 17 elements of the periodic table. The metals are often found combined together in ores and must be separated into its individual elements. On the supply side of the market, China is currently the largest producer of rare earth elements in the world, mining at least 90% of total world production. Consequently, many countries around the world rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. With one supplier effectively monopolizing the rare earth industry, this imposes severe supply-chain risks to the producers of products that rely on rare earth minerals. After several actions that have restricted the supply, the United States, the European Union, and Japan have challenged China for violating provisions of its membership in the World Trade Organization. This paper will examine the rare earth industry, Chinas near-monopoly, global supply-chain risks, and strategies to reduce dependence on China, including the invocation of the WTOs dispute resolution process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Akanova, G. Zh, A. G. Ismailova und D. Kh Kamysbayev. „Separation methods of rare earth metals“. Vestnik KazNRTU 141, Nr. 5 (2020): 749–54. http://dx.doi.org/10.51301/vest.su.2020.v141.i5.126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Troshin, A., und A. Borukhovich. „Rare earth metals and new physics“. Nanoindustry Russia, Nr. 6 (2015): 42–49. http://dx.doi.org/10.22184/1993-8578.2015.60.6.42.49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wackett, Lawrence P. „Microbial extraction of rare earth metals“. Microbial Biotechnology 15, Nr. 4 (30.03.2022): 1296–97. http://dx.doi.org/10.1111/1751-7915.14055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lyubov, D. M., und A. A. Trifonov. „Polyhydride Complexes of Rare-Earth Metals“. INEOS OPEN 3, Nr. 1 (Juli 2020): 1–19. http://dx.doi.org/10.32931/io2001r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bochkarev, Mikhail N. „Arene complexes of rare-earth metals“. Russian Chemical Reviews 69, Nr. 9 (30.09.2000): 783–94. http://dx.doi.org/10.1070/rc2000v069n09abeh000601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Vajda, P., und J. N. Daou. „Lattice defects in rare-earth metals“. Philosophical Magazine A 63, Nr. 5 (Mai 1991): 883–96. http://dx.doi.org/10.1080/01418619108213922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Stirling, W. G., K. A. McEwen und C. K. Loong. „Intermultiplet Transitions in Rare-Earth Metals“. Physica B+C 136, Nr. 1-3 (Januar 1986): 420–23. http://dx.doi.org/10.1016/s0378-4363(86)80107-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yakovkin, I. N. „Valence of “divalent” rare earth metals“. Applied Surface Science 256, Nr. 15 (Mai 2010): 4845–49. http://dx.doi.org/10.1016/j.apsusc.2010.01.114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Blyth, R. I. R., R. Cosso, S. S. Dhesi, K. Newstead, A. M. Begley, R. G. Jordan und S. D. Barrett. „Surface structure of rare earth metals“. Surface Science Letters 251-252 (Juli 1991): A354. http://dx.doi.org/10.1016/0167-2584(91)90958-t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Blyth, R. I. R., R. Cosso, S. S. Dhesi, K. Newstead, A. M. Begley, R. G. Jordan und S. D. Barrett. „Surface structure of rare earth metals“. Surface Science 251-252 (Juli 1991): 722–26. http://dx.doi.org/10.1016/0039-6028(91)91086-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Hachiya, Kan, und Yasuhiko Ito. „Interatomic potentials for rare-earth metals“. Journal of Physics: Condensed Matter 11, Nr. 34 (16.08.1999): 6543–51. http://dx.doi.org/10.1088/0953-8984/11/34/306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Campbell, Gary A. „Rare earth metals: a strategic concern“. Mineral Economics 27, Nr. 1 (11.04.2014): 21–31. http://dx.doi.org/10.1007/s13563-014-0043-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wang, Shijie. „Rare Earth Metals: Resourcefulness and Recovery“. JOM 65, Nr. 10 (29.08.2013): 1317–20. http://dx.doi.org/10.1007/s11837-013-0732-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lyubov, D. M., und A. A. Trifonov. „Benzyl complexes of rare earth metals“. Russian Chemical Bulletin 73, Nr. 6 (Juni 2024): 1497–540. http://dx.doi.org/10.1007/s11172-024-4271-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chernyi, S. A. „Secondary Resources of Rare Еarth Мetals“. Ecology and Industry of Russia 24, Nr. 9 (01.09.2020): 44–50. http://dx.doi.org/10.18412/1816-0395-2020-9-44-50.

Der volle Inhalt der Quelle
Annotation:
The article provides an overview of the main existing methods for recycling rare earth metals from various types of waste. It was noted that the demand for rare-earth metals is increasing annually due to the growth of advanced technologies, mainly in the sectors of electronics, power engineering and photonics. It has been established that in countries producing final products of high processing, the chemical-technological processes of processing goods that have worked out their life cycle, and, first of all, fluorescent lamps, NdFeB magnets from electronic devices, and nickel-metal hydride (NiMeH) batteries containing rare earths are most quickly created. The most profitable and recycling option is the reuse of products containing rare-earth metals, however, such technologies are applicable for a narrow range of waste. Another important area of REM recycling is the processing of industrial waste. For countries with developed mining and chemical industries, mining processing technologies are attractive. It is shown that for Russia, more appropriate are schemes for the disposal of industrial waste, primarily waste from the production of apatite concentrate. The main problems of the development of REM recycling are identified: low content and dispersion of rare earths in waste; the presence of impurities that impede the extraction of valuable components and the toxicity of the used recycling schemes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Liu, Hang, Yao Zhang, Yikun Luan, Huimin Yu und Dianzhong Li. „Research Progress in Preparation and Purification of Rare Earth Metals“. Metals 10, Nr. 10 (15.10.2020): 1376. http://dx.doi.org/10.3390/met10101376.

Der volle Inhalt der Quelle
Annotation:
The purity of rare earth metals is one of the most important factors to research and develop high technique materials. However, high purity rare earth metals are not easily achieved. This review summarizes the preparation and purification methods of rare earth metals. First, the preparation principle and process of molten salt electrolysis and metal thermal reduction are introduced. The main sources of metallic impurities and interstitial impurities in rare earth metals as well as the action mechanism of reducing the concentration of different impurities are analyzed and summarized. Then, the purification principle and process of vacuum distillation, arc melting, zone melting, and solid state electromigration are also discussed. Furthermore, the removal effect and function rule of metallic impurities and interstitial impurities in rare earth metals are outlined. Finally, the crucial issues in the development of high purity rare earth metals are put forward, and the development direction of high purity rare earth metals in future are pointed out on this basis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ning, Yuantao. „Alloying and Strengthening Effects of Rare Earths in Palladium“. Platinum Metals Review 46, Nr. 3 (01.07.2002): 108–15. http://dx.doi.org/10.1595/003214002x463108115.

Der volle Inhalt der Quelle
Annotation:
The effect of adding small amounts of rare earth elements to Palladium is to strengthen the Palladium. These strengthening effects are discussed here, based on known phase diagrams of Palladium-rare earths, Palladium-rare earth alloying behaviour and atomic (or ionic) size effects. The Solid solubilities of the rare earths in Palladium, transition temperatures of various intermediate phases and eutectic temperature in these systems are influenced by the ionic (or atomic) size of the rare earth elements. A parameter, Hs, the product of the relative difference in atomic weights and the relative difference in atomic radii, between a rare earth and Palladium is used to examine the Solid solution strengthening effects caused by dilute rare earths. The alloying behaviours of Palladium with the rare earths are very analogous, and could perhaps be used to predict alloying behaviour in some unexamined Palladium systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Matsuoka, Eiichi, Yo Tomiyama, Kotaro Iwasawa, Hitoshi Sugawara, Takahiro Sakurai und Hitoshi Ohta. „Magnetic anisotropy of tetragonal rare-earth compounds RRu2Al2B (R: rare-earth metals)“. Journal of the Korean Physical Society 62, Nr. 12 (Juni 2013): 1866–68. http://dx.doi.org/10.3938/jkps.62.1866.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Cherkasova, Tatiana, Elizaveta Cherkasova, Anastasia Tikhomirova, Alyona Bobrovni-kova und Irina Goryunova. „Rare and Rare-Earth Metals in Coal Processing Waste“. E3S Web of Conferences 21 (2017): 02009. http://dx.doi.org/10.1051/e3sconf/20172102009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Firsov, Aleksandr V., Aleksandr V. Artamonov, Dar'ya N. Smirnova, Aleksandr P. Ilyin und Segreiy P. Kochetkov. „SORPTION OF RARE-EARTH METALS FROM NO EVAPORATED DIHYDRATE PHOSPHORIC ACID ON MACROPOROUS STRONGLY ACIDIC CATIONITE“. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, Nr. 4 (12.07.2018): 50. http://dx.doi.org/10.6060/tcct.20165904.5321.

Der volle Inhalt der Quelle
Annotation:
The kinetic and dynamic characteristics of the sorption of rare earths metals (REE) from no evaporated extration phosphoric acid (EPA) of dihydrate production on macroporous strongly acidic cation Rurolite C150 were investigated. The process of sorption of rare earth metals was established to take place in the external diffusion region.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Azhar, Muhamad, Solechan Solechan, Retno Saraswati, Putut Suharso, Suhartoyo Suhartoyo und Budi Ispriyarso. „The New Renewable Energy Consumption Policy of Rare Earth Metals to Build Indonesia's National Energy Security“. E3S Web of Conferences 68 (2018): 03008. http://dx.doi.org/10.1051/e3sconf/20186803008.

Der volle Inhalt der Quelle
Annotation:
This study aims to discuss the policy of using renewable energy in the form of rare metal eart as an effort to build national energy security. The research method used a legal research looking from various perspectives in social science. Law is seen as a space for the process of scientific study in order to seek truth. The use of relevant legal research wants to understand the law more thoroughly. In performing implementation analysis, using the method of Regulatory Impact Assessment (RIA) with focus on energy regulation. The results of the study show that: First, the policy of the Indonesian republic government regarding the use of new energy and renewable energy aims to prepare the carrying capacity of national energy security. This policy has not fully gone well. The policy is not supported by consistency in issuing derivative policies. Second, the use of new energy and renewable energy, especially rare earth metals as part of efforts to encourage national energy security in Indonesia is still very far from expectations. The use of rare eart metal is only around 0.7% of the use of new energy. Efforts to explore and exploit rare earth metals have not been carried out in a timely manner. Whereas the potential of rare earth metals is a strategic community and has the potential to encourage national energy security in Indonesia. Indonesia is projected to produce rare earth metals reaching 20% of the world's supply.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Liao, Chunfa, Lianghua Que, Zanhui Fu, Pan Deng, Alin Li, Xu Wang und Shumei Chen. „Research Status of Electrolytic Preparation of Rare Earth Metals and Alloys in Fluoride Molten Salt System: A Mini Review of China“. Metals 14, Nr. 4 (29.03.2024): 407. http://dx.doi.org/10.3390/met14040407.

Der volle Inhalt der Quelle
Annotation:
China’s rare earth reserves and consumption are the highest in the world. Rare earth metals and alloys play a pivotal role in the domains of permanent magnetic materials, hydrogen storage materials, luminescent materials, abrasive materials, etc. The molten salt electrolysis process is the most widely used method for producing light rare earth metals and alloys in China, with distinct advantages such as continuous production and short process flow. This article focuses on the process technology of preparing rare earth metals and alloys by electrolyzing rare earth oxides in fluoride systems. This article summarizes the effects of process parameters such as cathode and anode structures, electrolysis temperature, and current density on the direct recovery and current efficiency of the preparation of light rare earth metals (La, Ce, Pr, Nd), RE–Mg (RE for rare earth) alloys, RE–Al alloys, RE–Ni alloys, and other rare earth alloys. Meanwhile, the disadvantages of the electrolytic cells and electrode configurations that are currently used in industrial production are discussed. Accordingly, the future prospects of molten salt electrolysis technology in the preparation of rare earth metals and alloys are clarified.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Malinovskaya, Tatyana D., Roman A. Nefedov, Ouna B. Sambueva und Victor Sachkov. „Advanced of Rare Earth Fluorides Technology“. Advanced Materials Research 1085 (Februar 2015): 229–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1085.229.

Der volle Inhalt der Quelle
Annotation:
The thermochemical processes of synthesis and purification of rare earth metals fluorides through the transfer of fluoroammonium complexes were discussed. By differential thermal calorimetry the temperature maxima of rates of formation and decomposition of complex compounds were defined and the values of the apparent activation energy processes were determined. It is possible the use of fluoroammonium systems to develop the preparation of anhydrous fluorides of rare earth metals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

DAS NEVES, Paulo Cesar Pereira, Darcson Vieira de Freitas und Lavinel G. IONESCU. „INERALOGICAL ASPECTS OF RARE EARTH ELEMENTS“. SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 18, Nr. 18 (20.12.2010): 37–43. http://dx.doi.org/10.48141/sbjchem.v18.n18.2010.40_2010.pdf.

Der volle Inhalt der Quelle
Annotation:
Rare earth elements or rare earth metals are group elements including the fifteen lanthanides (Z=57 to Z=71). Scandium (Z=21) and Yttrium (Z=39) are considered rare-earth by IUPAC since they tend to occur in the same ore deposits as the lanthanides and have similar chemical properties. The present article describes the mineralogical properties of the yttrium and the lanthanides. A total of two hundred and seventy-seven (277) minerals are known, the most common being monazites and bastnazites. Rare earth metals have many important industrial applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Klementyeva, Svetlana V., Taisiya S. Sukhikh, Pavel A. Abramov und Andrey I. Poddel’sky. „Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals“. Molecules 28, Nr. 4 (20.02.2023): 1994. http://dx.doi.org/10.3390/molecules28041994.

Der volle Inhalt der Quelle
Annotation:
We report the synthesis and characterization of two types of new mixed-ligand rare earth complexes: tetracoordinate (NacNacMes)Ln(BIANdipp) (Ln = Dy (1), Er (2) and Y (3)) and pentacoordinate (NacNacMes)Ln(APdipp)(THF) (Ln = Dy (4), Er (5) and Y (6)). The first three compounds were prepared by the reaction of [(BIANDipp)LnI] with potassium β-diketiminate. The salt metathesis of β-diketiminato-supported rare earth dichlorides (NacNacMes)LnCl2(THF)2 with sodium o-amidophenolate results in compounds 4–6. The crystal structures of complexes 1–6 were determined by single-crystal analysis. The combination of bulky monoanionic N-mesityl-substituted β-diketiminates with sterically hindered redox-active ligands led to the very low coordination numbers of rare earths and strong distortion of the chelate ligands.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Cherednichenko, V. S., A. S. An’shakov, V. A. Serikov und V. A. Faleev. „Plasma Carbothermic Reduction of Rare-Earth Metals“. Russian Metallurgy (Metally) 2018, Nr. 6 (Juni 2018): 507–12. http://dx.doi.org/10.1134/s0036029518060071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Liberman, David, und Andrew Zangwill. „Quadrupole resonances in the rare-earth metals“. Physical Review A 39, Nr. 1 (01.01.1989): 415–16. http://dx.doi.org/10.1103/physreva.39.415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ogata, Y., H. Chudo, M. Ono, K. Harii, M. Matsuo, S. Maekawa und E. Saitoh. „Gyroscopic g factor of rare earth metals“. Applied Physics Letters 110, Nr. 7 (13.02.2017): 072409. http://dx.doi.org/10.1063/1.4976998.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Bautista, Renato G. „The Growing Interest in Rare Earth Metals“. JOM 40, Nr. 5 (Mai 1988): 21. http://dx.doi.org/10.1007/bf03258905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

F. Berk, N., J. J. Rush, T. J. Udovic und I. S. Anderson. „Anomalous hydrogen dynamics in rare earth metals“. Journal of the Less Common Metals 172-174 (August 1991): 496–508. http://dx.doi.org/10.1016/0022-5088(91)90170-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Blyth, R. I. R., S. S. Dhesi, P. A. Gravil, K. Newstead, R. Cosso, R. J. Cole, A. J. Patchett, T. Mitrelias, N. P. Prince und S. D. Barrett. „Surface electronic structure of rare earth metals“. Journal of Alloys and Compounds 180, Nr. 1-2 (März 1992): 259–63. http://dx.doi.org/10.1016/0925-8388(92)90390-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Borzone, Gabriella, Riccardo Raggio und Riccardo Ferro. „Thermochemistry and reactivity of rare earth metals“. Physical Chemistry Chemical Physics 1, Nr. 7 (1999): 1487–500. http://dx.doi.org/10.1039/a900312f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Gschneidner, K. A. „Physical properties of the rare earth metals“. Bulletin of Alloy Phase Diagrams 11, Nr. 3 (Juni 1990): 216–24. http://dx.doi.org/10.1007/bf03029283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Khorev, A. I. „Alloying titanium alloys with rare-earth metals“. Russian Engineering Research 31, Nr. 11 (November 2011): 1087–94. http://dx.doi.org/10.3103/s1068798x11110104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Shinjoh, Hirohumi. „Rare earth metals for automotive exhaust catalysts“. Journal of Alloys and Compounds 408-412 (Februar 2006): 1061–64. http://dx.doi.org/10.1016/j.jallcom.2004.12.151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Sakurai, J., S. Nakatani, A. Adam und H. Fujiwara. „Magnetoresistance of RAgSn (R: rare-earth metals)“. Journal of Magnetism and Magnetic Materials 108, Nr. 1-3 (Februar 1992): 143–44. http://dx.doi.org/10.1016/0304-8853(92)91386-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Nieland, Anja, Jan-Hendrik Lamm, Andreas Mix, Beate Neumann, Hans-Georg Stammler und Norbert W. Mitzel. „Alkynyl Compounds of the Rare-earth Metals“. Zeitschrift für anorganische und allgemeine Chemie 640, Nr. 12-13 (13.08.2014): 2484–91. http://dx.doi.org/10.1002/zaac.201400158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Dance, Amber. „Microbial miners take on rare-earth metals“. Nature 623, Nr. 7988 (20.11.2023): 876–78. http://dx.doi.org/10.1038/d41586-023-03611-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie