Auswahl der wissenschaftlichen Literatur zum Thema „Rare earth metals“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rare earth metals" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Rare earth metals":

1

Djuraev, Davron Rakhmonovich, und Mokhigul Madiyorovna Jamilova. „Physical Properties Of Rare Earth Elements“. American Journal of Applied sciences 03, Nr. 01 (30.01.2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
2

Giacalone, Joseph A. „The Market For The "Not-So-Rare" Rare Earth Elements“. Journal of International Energy Policy (JIEP) 1, Nr. 1 (03.05.2012): 11–18. http://dx.doi.org/10.19030/jiep.v1i1.7013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper examines the market for the Rare earth elements. These are comprised of 17 elements of the periodic table which include 15 elements from the group known as lanthanides and two additional elements known as scandium and yttrium. The metals are often found combined together in ores and must be separated into its individual elements. The fact is that rare earth metals are not rare in terms of the quantity present in the earths crust. However, the metals are less concentrated than other more common metals and the extraction and separation processes necessitate high research and development costs and large capital outlays.The various applications of rare earth elements can be broadly classified into four major categories, namely: High Technology Consumer Products, Environmentally Friendly Products, Industrial and Medical Devices, and National Defense Systems. The demand for such high technology products is rapidly increasing causing a simultaneous upsurge in the demand for rare earth metals as well.On the supply side, China dominates the production rare earth elements, mining approximately 97% of total world production. Consequently, most countries must rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. This near-monopoly imposes several supply-chain risks on the importing nations which are exploring ways to mitigate the potential economic harm associated with these risks.
3

Nickels, Liz. „Reclaiming rare earth metals“. Metal Powder Report 75, Nr. 4 (Juli 2020): 189–92. http://dx.doi.org/10.1016/j.mprp.2019.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Johansson, Börje, Lars Nordström, Olle Eriksson und M. S. S. Brooks. „Magnetism in Rare-Earth Metals and Rare-Earth Intermetallic Compounds“. Physica Scripta T39 (01.01.1991): 100–109. http://dx.doi.org/10.1088/0031-8949/1991/t39/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Matakova, Rema, und K. Sagadieva. „Electrochemistry of rare earth metals“. Chemical Bulletin of Kazakh National University, Nr. 2 (15.05.2012): 114. http://dx.doi.org/10.15328/chemb_2012_2114-124.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kurysheva, V. V., E. A. Ivanova und P. E. Prokhorva. „Extractants for rare earth metals“. Chimica Techno Acta 3, Nr. 2 (2016): 97–120. http://dx.doi.org/10.15826/chimtech.2016.3.2.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Netzer, F. P., und J. A. D. Matthew. „Surfaces of rare earth metals“. Reports on Progress in Physics 49, Nr. 6 (01.06.1986): 621–81. http://dx.doi.org/10.1088/0034-4885/49/6/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Silver, G. L. „Reactions of Rare Earth Metals“. Journal of Chemical Education 72, Nr. 10 (Oktober 1995): 956. http://dx.doi.org/10.1021/ed072p956.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Isshiki, Minoru. „Purification of rare earth metals“. Vacuum 47, Nr. 6-8 (Juni 1996): 885–87. http://dx.doi.org/10.1016/0042-207x(96)00087-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ragnarsdóttir, Kristín Vala. „Rare metals getting rarer“. Nature Geoscience 1, Nr. 11 (November 2008): 720–21. http://dx.doi.org/10.1038/ngeo302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Rare earth metals":

1

Dhesi, Sarnjett Singh. „Surface structure of rare-earth metals“. Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Harika, Rita 1979. „Advances in rare earth chemistry“. Monash University, School of Chemistry, 2003. http://arrow.monash.edu.au/hdl/1959.1/5545.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jehan, David Antony. „Magnetic structures in rare earth metals and superlattices“. Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lozano, Letellier Alba. „Geochemistry of rare earth elements in acid mine drainage precipitates“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Rare earth elements (REE) are known as the lanthanide series (La-Lu) plus yttrium (Y) and scandium (Sc). REE are essential materials for modern industries and especially for green technologies (wind turbines, batteries, lasers, catalysts, etc.). However, despite their high global demand, their supply is limited such that the EU has cataloged it as critical raw materials. In order to ensure the supply of REE in the future, the search for alternative sources of these elements worldwide has been promoted in recent years. Acid mine drainage (AMD) produced by the Fe-sulphide weathering can effectively leach Fe, Al, SO4, and REE from the host rock. This can lead to high concentrations of these liberated species in the affected waters. Thus, the REE concentrations in AMD can be between two and three orders of magnitude higher than natural waters, as such it can be considered as a complementary source of REE recovery. The increase of pH in AMD by mixing neutral waters results in the precipitation of iron oxy-hydroxysulfate (schwertmannite) from pH 3-3.5, and aluminum (basaluminite) from pH 4-4.5 in the river channels. This process may be accompanied by REE scavenging. Due to its acidity and high metal load, acid mine drainage presents a major environmental problem worldwide, therefore, different treatment systems have been developed to minimize its impact. Disperse Alkaline Substrate (DAS) passive remediation system neutralizes AMD by dissolving calcite, and allowing the sequential precipitation of schwertmannite and basaluminite in separated layers, where REE are preferably retained in the basaluminite-enriched waste. Despite this, there are still no studies describing the adsorption of REE on both basaluminite and schwertmannite in these environments. The REE scavenging mechanism is studied by adsorption on synthetic minerals of basaluminite and schwertmannite as a result of variation to the both the pH and sulfate concentration. A thermodynamic adsorption model is proposed based on experimental results in order to predict and explain the REE mobility in AMD mixtures with neutral waters and in a passive treatment system. Basaluminite and schwertmannite have a nanocrystalline character. Further, schwertmannite has been observed to transform into goethite on weekly timescales, resulting in sulfate release. However, there is a gap of knowledge about basaluminite stability at variable sulfate concentration and pH and its possible transformation to other more crystalline Al-minerals. In this study, basaluminite local order at different pH values and dissolved sulfate concentrations was characterized. Results demonstrate that basaluminite can transform to nanoboehmite in weeks under circumneutral pH. However, the presence of sulfate can inhibit this transformation. Separate adsorption experiments on both basaluminite and schwertmannite were performed with two different concentrations of SO4 while varying the pH (3-7). Results show that the adsorption is strongly dependent on pH, and to a lesser extent on sulfate concentration. Lanthanide and yttrium adsorption is most effective near pH 5 and higher, while that of scandium begins around pH 4. Due to the high concentrations of sulfate in acidic waters, the predominant aqueous REE species are sulfate complexes (MSO4+). Notably, Sc(OH)2+ represents a significant proportion of aqueous Sc. , A surface complexation model is proposed in which predominant aqueous species (Mz+) adsorb on the mineral surface, XOH, following the reaction: The adsorption of the lanthanides and yttrium occurs through the exchange of one and two protons from the basaluminite and schwertmannite surface, respectively, with the aqueous sulfate complexes. The sorbed species form monodentate surface complexes with the aluminum mineral and bidentate with the iron mineral. In the case of Sc, the aqueous species ScSO4+ and Sc(OH)2+ form bidentate surface complexes with both minerals. EXAFS analysis of the YSO4+ complex adsorbed on the basaluminite surface suggests the formation of a monodentate inner sphere complex, in agreement with the proposed thermodynamic model. Once the surface complexation model was validated, it was used to asses and predict the REE mobility in passive remediation systems and acidic water mixing zones with alkaline inputs from the field. The REE are preferentially retained in basaluminite-rich waste during passive remediation due to its sorption capacity between pH 5-6. In contrast, schwertmannite waste contains very little REE because the formation of this mineral occurs at pH lower than 4, which prevents REE adsorption. Further, Sc may be scavenged during schwertmannite precipitation as a result of this low pH The model correctly predicts the absence of REE in schwertmannite precipitates and the enrichment of the heavy and intermediate REE with respect to the light REE in basaluminite precipitates collected in the water mixing zones. However, there is a systematic overestimation of the fractionation of rare earths in basaluminite precipitate. This inaccuracy is mainly due to the fact that the mineral precipitation and adsorption are not synchronous process, while basaluminite precipitates from pH 4, REE adsorption occurs at higher pH values, between 5 and 7, when the water mixture reaches these values and a fraction of the particles have been dispersed.
Las tierras raras (en inglés rare earth elements, REE) son conocidas como el conjunto de la serie de los lantánidos (La-Lu), itrio (Y) y escandio(Sc). Las tierras raras son materiales indispensables para las industrias modernas y en especial para las tecnologías verdes (aerogeneradores, baterías, láseres, catalizadores, etc.). Sin embargo a pesar de su gran demanda mundial, su abastecimiento es limitado, por lo que han sido catalogadas por la UE como materias primas críticas (Critical Raw Materials). Con el objetivo de asegurar el abastecimiento de REE en el futuro, en los últimos años se ha promovido la búsqueda de fuentes alternativas de estos elementos en todo el mundo. El drenaje ácido de mina (en inglés acid mine drainage, AMD) producido por la meteorización de sulfuros de Fe, tiene un alto poder de lixiviación de las rocas, por lo que las aguas afectadas adquieren elevadas concentraciones en disolución de Fe, Al, SO4 y otros metales, como las REE. Así, las concentraciones de REE en AMD son entre dos y tres órdenes de magnitud superiores al resto de las aguas naturales y pueden suponer una fuente complementaria de recuperación de REE. El aumento de pH del AMD por mezcla con aguas neutras da lugar a la precipitación en los cauces de los ríos de oxy-hidroxisulfatos de hierro (schwertmannita), a partir de pH 3-3.5, y de aluminio (basaluminita), a partir de pH 4-4.5; acompañado de la eliminación de las tierras raras. Debido a su acidez y carga metálica, el drenaje ácido de mina presenta un problema medioambiental de primera magnitud, por lo que se han desarrollado diferentes sistemas de tratamiento para minimizar su impacto. El sistema de tratamiento pasivo Disperse Alkaline Substrate (DAS) produce la neutralización de las aguas ácidas por la disolución de la calcita presente en el sistema, permitiendo la precipitación secuencial, de schwertmannita y basaluminita. Las tierras raras quedan retenidas preferentemente en el residuo enriquecido en basaluminita. A pesar de ello, aún no existen estudios que describan la adsorción de tierras raras tanto en basaluminita como schwertmannita en estos ambientes. En esta tesis se estudia el mecanismo de retención de las tierras raras mediante adsorción en minerales sintéticos de basaluminita y schwertmannita, en función del pH y del contenido de sulfato disuelto. Con los resultados experimentales obtenidos, se propone un modelo termodinámico de adsorción para predecir y explicar la movilidad de las tierras raras observada en mezclas de AMD con aguas neutras y en un sistema de tratamiento pasivo. La basaluminita y la schwertmannita presentan un carácter nanocristalino. Es conocido que la schwertmannita se transforma en goethita en semanas, liberando sulfato. Sin embargo, nada se sabe de la basaluminita y su posible transformación a otros minerales de Al más cristalinos. De este modo, la caracterización del orden local de la basaluminita a diferentes valores de pH y sulfato se expone en primer lugar. Dependiendo del pH y el sulfato en disolución, la basaluminita se transforma en diferentes grados a nanoboehmita en semanas, pero tiende a estabilizarse con la presencia de sulfato en solución. Los experimentos de adsorción en basaluminita y schwertmannita con diferentes concentraciones de SO4 realizados para cada mineral y en rangos de 3-7 de pH han demostrado que la adsorción es fuertemente dependiente del pH, y en menor medida del sulfato. La adsorción de los lantánidos y del itrio es efectiva a pH 5, mientras que la del escandio comienza a pH 4. Debido a las altas concentraciones de sulfato en aguas ácidas, las especies acuosas predominantes de las tierras raras son los complejos con sulfato, MSO4+. Además del complejo sulfato, el Sc presenta importantes proporciones de Sc(OH)2+ en solución. En función de la dependencia del pH y de la importancia de la especiación acuosa, se propone un modelo de complejación superficial donde la especie acuosa predominante (Mz+) se adsorbe a la superficie libre el mineral, XOH, cumpliendo la siguiente reacción: La adsorción de los lantánidos y del itrio se produce a través del intercambio de uno o dos protones de la superficie de la basaluminita o de la schwertmannita, respectivamente, con los complejos sulfato acuoso, formando complejos superficiales monodentados con el mineral de aluminio y bidentados con el de hierro. En el caso del Sc, las especies acuosas ScSO4+ y Sc(OH)2+ forman complejos superficiales bidentados con ambos minerales. Complementando el modelo propuesto, el análisis de EXAFS del complejo YSO4+ adsorbido en la superficie basaluminita sugiere la formación de un complejo monodentado de esfera interna, coincidiendo con el modelo termodinámico propuesto. El modelo de complejación superficial, una vez validado, ha permitido evaluar y predecir la movilidad de REE en los sistemas de tratamiento pasivos y en zonas de mezcla de aguas ácidas con aportes alcalinos estudiados en el campo. La preferente retención de las tierras raras en la zona de la basaluminita precipitada en los sistemas de tratamiento pasivo ocurre por adsorción de las mismas a pH entre 5-6. La ausencia de tierras raras en la zona de schwertmannita se debe al bajo pH de su formación, inferior a 4, que impide la adsorción de las mismas. Sin embargo, debido a su menor pH de adsorción, una fracción de Sc puede quedar retenida en la schwertmannita. El modelo también predice correctamente la ausencia de REE en los precipitados de schwertmannita y el enriquecimiento de las tierras raras pesadas e intermedias respecto a las ligeras en los precipitados de basaluminita recogidos en el campo en las zonas de mezcla de aguas. Sin embargo, se ha observado una sistemática sobreestimación del fraccionamiento de las tierras raras en los precipitados de basaluminita. Este hecho se debe principalmente a que la precipitación del mineral no ocurre de forma síncrona con la adsorción, precipitando la basaluminita a partir de pH 4 y adsorbiendo tierras raras a pH más altos, entre 5 y 7, cuando las partículas sólidas han sido parcialmente dispersadas.
5

Johnson, Kevin Ross David. „An investigation of novel reactivity and bonding in rare earth metal complexes“. Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, c2012, 2012. http://hdl.handle.net/10133/3329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The synthesis, structure and reactivity of organolanthanide complexes supported by a family of novel bis(phosphinimine)carbazole and bis(phosphinimine)pyrrole pincer ligands is presented. Through the systematic development of the ligand frameworks, rare earth metal species with unique structure and reactivity were encountered. A variety of complexes that exhibited unusual bonding modes were prepared and characterized by single-crystal X-ray diffraction and multinuclear NMR spectroscopy. Modulation of the ligand frameworks allowed for rational manipulation of the steric and electronic environment imparted to the metal. Incorporation of a variety of N-aryl rings (mesityl, phenyl, para-isopropylphenyl and 2-pyrimidine) and PR2 moieties (PPh2, PO2C2H4 and PMe2) into the ligand design led to rare earth complexes that revealed diverse reaction behaviour. In particular, C–H bond activation, sigmatropic alkyl migration and ring opening insertion reactivity were observed. Kinetic and deuterium labeling studies are discussed with respect to the unique reaction mechanisms encountered during the study of these highly reactive organometallic rare earth complexes.
xxvi, 247 leaves : ill. (some col.) ; 29 cm + 1 CD-ROM
6

Steinberg, Simon [Verfasser]. „Early Rare-Earth Metal Cluster Complexes With Endohedral Transition Metals / Simon Steinberg“. München : Verlag Dr. Hut, 2013. http://d-nb.info/1042307504/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Blyth, Robert I. R. „Bulk and surface electronic structure of rare earth metals“. Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The basic properties of the rare earth metals, including single crystal growth, crystal and magnetic structures, and the relationship between electronic and magnetic structure, are reviewed. The problems encountered by the theoretical treatment of the partially occupied, but highly localised, lanthanide 4f levels as bands are discussed, and bandstructure calculations presented for the hexagonal close-packed rare earths. These are compared with available experimental and theoretical data. It is suggested that the exchange-splitting of the lanthanide valence bands may well persist in the paramagnetic state, and that account should be taken of the localised 4f moments in future calculations. The difficulties associated with the preparation of clean single crystal rare earth surfaces are described. The origin of the surface-orderdependent state seen in angle-resolved UV photoemission (ARUPS) spectra from rare earth (0/001) surfaces is discussed. (7 x 1) reconstructions of the (1120) surfaces of Ho, Er and Y are reported, with the resulting surface geometric and electronic structure being indistinguishable from those of the ideal (0001) structure. Momentum-resolved inverse photoernission measurements are presented for Y(000l), with results in good agreement with the calculated bandstructure. A comprehensive ARUPS study of the valence band of Ho(OOOl) is reported, and the results demonstrated to be entirely explicable in terms of emission from one-electron states. ARUPS data from Y(000l), Gd(000l) and Tb(000l) are presented, discussed in the light of the Ho results, and the conclusions of previous ARUPS studies of these surfaces revealed to be in error. Essentially similar ARUPS features are seen on all hcp rare earth (0001) surfaces so far studied and it is suggested that all other such surfaces will show the same features. The Ho(000l) 5p levels are shown to have significant band character, suggesting that further refinements to the band structure calculations are required.
8

Hoh, Soon Wen. „Oxidation catalysis using transition metals and rare earth oxides“. Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/69756/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Oxygen abstraction together with CO adsorption and oxidation over palladium/platinum-doped cerium (IV) oxide and gold catalyst supported on iron (III) oxide were studied employing density functional theory with the inclusion of on-site Coulomb interaction (DFT+U). Hybrid functionals employing DFT method are able to re-produce structural properties for CeO2 that agrees well with experimental data. The localisation of two excess electrons upon the removal of an oxygen atom from the CeO2 lattice is well described by DFT+U and is found to be most favourable on two next nearest neighbour cerium sites from the vacancy site. This defective bulk structure gave an oxygen vacancy formation energy (Evac) of 2.45 eV using PW91+U (2.43 eV using PBE+U). The surface defect formation energies are calculated to be lower than that of the bulk structure. Other structures with different pair of Ce3+ sites at higher Evac are also present. At higher temperature, it is predicted that the energy gained from thermal heating will allow the defect structure to end up at one of the higher energy defective structures obtained. Both the CeO2 and α-Fe2O3 support are reduced more easily in the presence of transition metal atoms or clusters. Supported gold nanoparticle is found to affect the Evac on the α-Fe2O3(0001) surface only to a certain limited influential area around the nanoparticle. The Evac is reduced further when the Au atoms at the periphery sites are oxidised to give Au10O6 cluster. CO has weak interaction with the CeO2(111) surface. However, by doping the surface with Pd2+ and Pt2+ ions, CO is found to adsorb strongly at the three coordinated metal dopant that has a vacancy coordination site exposed on the surface. Weak adsorptions are also observed at the perimeter sites of Au10O6/α-Fe2O3(0001). Overall, it is predicted that CO oxidation, which follows the Mars-van Krevelen type mechanism can be enhanced by the presence of transition metal dopants or clusters. The continuous effort of researchers to reduce CO emission and the curiosity on where the excess electrons from the removed oxygen localised in the CeO2 system have been the motivation of this project. This work will provide insight on catalyst design and the understanding of the electronic structure of the systems studied.
9

Ellerby, Mark. „Resistance and magnetization study of rare earth metals and compounds“. Thesis, Birkbeck (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kramer, Mathias. „Cationic alkyl and hydride complexes of the rare earth metals“. Aachen Shaker, 2009. http://d-nb.info/998740497/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Rare earth metals":

1

Hedrick, James B. Rare-earth minerals and metals. Washington, D.C: U.S. Department of the Interior, Bureau of Mines, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Han, Qiyong. Rare earth, alkaline earth and other elements in metallurgy. Tokyo: Japan Technical Information Service, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1933-, Huang Chun-Hui, Hrsg. Rare earth coordination chemistry: Fundamentals and applications. Hoboken, N.J: Wiley, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Watson, Dave. Magnetic structures of rare-earth metals. Birmingham: University of Birmingham, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Franks, Steven M. Rare earth minerals: Policies and issues. New York: Nova Science Publishers, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

1930-, Gschneidner Karl A., und Eyring LeRoy, Hrsg. Handbook on the physics and chemistry of rare earths. Amsterdam: Elsevier, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

1930-, Gschneidner Karl A., und Eyring LeRoy, Hrsg. Handbook on the physics and chemistry of rare earths. Amsterdam: Elsevier, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Altukhov, E. N. Karasugskoe redkozemelʹnoe mestorozhdenie: Osnovy ėndogennoĭ metallogenii i marketinga. Moskva: IMGRĖ, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

1950-, Evans C. H., Hrsg. Episodes from the history of the rare earth elements. Dordrecht: Kluwer Academic Publishers, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Devi︠a︡tykh, Grigoriĭ Grigorʹevich. High-purity refractory and rare metals. Herausgegeben von Burkhanov Gennadiĭ Sergeevich und Li︠akishev N. P. Cambridge, Eng: Cambridge International Science Pub., 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Rare earth metals":

1

Harbison, Raymond D., und David R. Johnson. „Rare Earth Metals“. In Hamilton & Hardy's Industrial Toxicology, 199–204. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118834015.ch29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wall, Frances. „Rare earth elements“. In Critical Metals Handbook, 312–39. Oxford: John Wiley & Sons, 2013. http://dx.doi.org/10.1002/9781118755341.ch13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Crowson, Phillip. „Rare Earth Minerals & Metals“. In Minerals Handbook 1992–93, 207–13. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-12564-7_32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gasik, Mikhail, Viktor Dashevskii und Aitber Bizhanov. „Ferroalloys with Rare-Earth Metals“. In Ferroalloys, 297–306. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57502-1_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Crowson, Phillip. „Rare Earth Minerals & Metals“. In Minerals Handbook 1994–95, 217–23. London: Palgrave Macmillan UK, 1994. http://dx.doi.org/10.1007/978-1-349-13431-1_34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Crowson, Phillip. „Rare earth minerals & metals“. In Minerals Handbook 1996–97, 297–305. London: Palgrave Macmillan UK, 1996. http://dx.doi.org/10.1007/978-1-349-13793-0_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Liu, Chang, Ming Yuan, Wen-Shen Liu, Mei-Na Guo, Hermine Huot, Ye-Tao Tang, Baptiste Laubie, Marie-Odile Simonnot, Jean Louis Morel und Rong-Liang Qiu. „Element Case Studies: Rare Earth Elements“. In Agromining: Farming for Metals, 297–308. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61899-9_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liu, Chang, Ming Yuan, Wen-Shen Liu, Mei-Na Guo, Hong-Xiang Zheng, Hermine Huot, Bastien Jally et al. „Element Case Studies: Rare Earth Elements“. In Agromining: Farming for Metals, 471–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58904-2_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yao, Yingming, und Qi Shen. „Organometallic Chemistry of the Lanthanide Metals“. In Rare Earth Coordination Chemistry, 309–53. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470824870.ch8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fort, D. „Purification of the Rare Earth Metals“. In Purification Process and Characterization of Ultra High Purity Metals, 145–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56255-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Rare earth metals":

1

Ilyina, Larisa Aidarovna. „TAXATION OF RARE EARTH METALS“. In РОССИЙСКАЯ НАУКА: АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ. Самара: Самарский государственный экономический университет, 2021. http://dx.doi.org/10.46554/russian.science-2021.02-2-17/20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

PATRONOV, Georgi, Irena KOSTOVA und Dan TONCHEV. „RARE EARTH METALS IN ZINC OXIDE RICH BOROPHOSPHATE GLASSES“. In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baryshev, Gennady K., Yuri V. Bozhko, Aleksandr P. Biryukov, Timur A. Malynov und Aleksandr O. Kislitsyn. „Open future of rare earth metals technologies“. In the Internationsl Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3129757.3129769.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abraha, K. „Infrared reflectivity calculations for rare-earth metals“. In 18th International Conference on Infrared and Millimeter Waves. SPIE, 2017. http://dx.doi.org/10.1117/12.2298753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Thakor, P. B., Y. A. Sonvane, H. P. Patel und A. R. Jani. „Thermophysical properties of liquid rare earth metals“. In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

JENSEN, JENS. „MAGNETIC STRUCTURES AND EXCITATIONS IN RARE-EARTH METALS“. In Proceedings of the First Regional Conference. World Scientific Publishing Company, 2000. http://dx.doi.org/10.1142/9789812793676_0093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Singh, D. V., und R. Swarup. „Magnetic ordering in electronic structure of rare earth chelcogenides“. In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Singh, D. V., N. P. Singh und R. Swarup. „The phase transition in magnetic rare earth semi conductors“. In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835965.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Swarup, R., N. P. Singh und D. V. Singh. „The magnetic phase transition in rare earth seri-conductors“. In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sokolov, Victor I. „Energy transfer processes in semiconductors doped with transition metals and rare-earth elements“. In Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare Earth and Transitional Ions, herausgegeben von Alexander I. Ryskin und V. F. Masterov. SPIE, 1996. http://dx.doi.org/10.1117/12.229157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Rare earth metals":

1

Thomas, M. D., K. L. Ford und P. Keating. Exploration geophysics for intrusion-hosted rare earth metals. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2011. http://dx.doi.org/10.4095/288092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stull, Dean P. Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters. Office of Scientific and Technical Information (OSTI), Mai 2016. http://dx.doi.org/10.2172/1373883.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wald, P. A review of the literature on the toxicity of rare-earth metals as it pertains to the engineering demonstration system surrogate testing. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/7259188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wald, P. A review of the literature on the toxicity of rare-earth metals as it pertains to the Engineering Demonstration System surrogate testing. Office of Scientific and Technical Information (OSTI), Oktober 1989. http://dx.doi.org/10.2172/5477480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yang, Jon, Sophia Bauer und Circe Verba. Strategies to Recover Easily-Extractable Rare Earth Elements and Other Critical Metals from Coal Waste Streams and Adjacent Rock Strata Using Citric Acid;. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1884275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Peter, J. M., und M. G. Gadd. Introduction to the volcanic- and sediment-hosted base-metal ore systems synthesis volume, with a summary of findings. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This volume presents results of research conducted during phase 5 of the Volcanic- and Sedimentary-hosted Base Metals Ore Systems project of the Geological Survey of Canada's Targeted Geoscience Initiative (TGI) program. The papers in this volume include syntheses and primary scientific reports. We present here a synopsis of the findings during this TGI project. Research activities have addressed several mineral deposit types hosted in sedimentary rocks: polymetallic hyper-enriched black shale, sedimentary exhalative Pb-Zn, carbonate-hosted Pb-Zn (Mississippi Valley-type; MVT), and fracture-controlled replacement Zn-Pb. Other carbonate-hosted deposits studied include a magnesite deposit at Mount Brussilof and a rare-earth element-F-Ba deposit at Rock Canyon Creek, both of which lack base metals but are spatially associated with the MVT deposits in the southern Rocky Mountains. Volcanogenic massive-sulfide deposits hosted in volcanic and mixed volcanic-sedimentary host rock settings were also examined. Through field geology, geochemical (lithogeochemistry, stable and radiogenic isotopes, fluid inclusions, and mineral chemistry), and geophysical (rock properties, magnetotelluric, and seismic) tools, the TGI research contributions have advanced genetic and exploration models for volcanic- and sedimentary-hosted base-metal deposits and developed new laboratory, geophysical, and field techniques to support exploration.
7

Scholz, Florian. Sedimentary fluxes of trace metals, radioisotopes and greenhouse gases in the southwestern Baltic Sea Cruise No. AL543, 23.08.2020 – 28.08.2020, Kiel – Kiel - SEDITRACE. GEOMAR Helmholtz Centre for Ocean Research Kiel, November 2020. http://dx.doi.org/10.3289/cr_al543.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
R/V Alkor Cruise AL543 was planned as a six-day cruise with a program of water column and sediment sampling in Kiel Bight and the western Baltic Sea. Due to restrictions related to the Covid-19 pandemic, the original plan had to be changed and the cruise was realized as six oneday cruises with sampling in Kiel Bight exclusively. The first day was dedicated to water column and sediment sampling for radionuclide analyses at Boknis Eck and Mittelgrund in Eckernförde Bay. On the remaining five days, water column, bottom water, sediment and pore water samples were collected at eleven stations covering different types of seafloor environment (grain size, redox conditions) in western Kiel Bight. The data and samples obtained on cruise AL543 will be used to investigate (i) the sedimentary cycling of bio-essential metals (e.g., nickel, zinc, and their isotopes) as a function of variable redox conditions, (ii) the impact of submarine groundwater discharge and diffusive benthic fluxes on the distribution of radium and radon as well as greenhouse gases (methane and nitrous oxide) in the water column, and (iii) to characterize and quantify the impact of coastal erosion on sedimentary iron, phosphorus and rare earth element cycling in Kiel Bight.
8

Han, M. K. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/882892.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Han, Mi-Kyung. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/888946.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kjarsgaard, B. A. Potential for rare earth and rare metal deposits, Thaidene Nene MERA study area. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie