Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rare Earth Elements spectra“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rare Earth Elements spectra" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rare Earth Elements spectra"
Suzuki, Chihiro, Fumihiro Koike, Izumi Murakami, Naoki Tamura, Shigeru Sudo und Gerry O’Sullivan. „Soft X-Ray Spectroscopy of Rare-Earth Elements in LHD Plasmas“. Atoms 7, Nr. 3 (03.07.2019): 66. http://dx.doi.org/10.3390/atoms7030066.
Der volle Inhalt der QuelleKoerting, Friederike, Nicole Koellner, Agnieszka Kuras, Nina Kristin Boesche, Christian Rogass, Christian Mielke, Kirsten Elger und Uwe Altenberger. „A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples“. Earth System Science Data 13, Nr. 3 (09.03.2021): 923–42. http://dx.doi.org/10.5194/essd-13-923-2021.
Der volle Inhalt der QuelleCowley, C. R., und M. Greenberg. „Third spectra of rare earth elements in chemically peculiar stars: IUE spectra“. Monthly Notices of the Royal Astronomical Society 232, Nr. 4 (01.06.1988): 763–70. http://dx.doi.org/10.1093/mnras/232.4.763.
Der volle Inhalt der QuelleBorisov, M. V., D. A. Bychkov, N. F. Pchelintseva und E. A. Ivleva. „Fractionation of rare-earth elements in the processes of hydrothermal ore formation“. Moscow University Bulletin. Series 4. Geology, Nr. 4 (28.08.2018): 59–64. http://dx.doi.org/10.33623/0579-9406-2018-4-59-64.
Der volle Inhalt der QuelleGangrskiĭ, Yu P., S. G. Zemlyanoi, D. V. Karaivanov, N. N. Kolesnikov, K. P. Marinova, B. N. Markov und V. S. Rostovskii. „Hyperfine magnetic anomaly in the atomic spectra of rare-earth elements“. Optics and Spectroscopy 92, Nr. 5 (Mai 2002): 658–63. http://dx.doi.org/10.1134/1.1481127.
Der volle Inhalt der QuelleChoi, Sung Woo, Shuichi Emura, Shigeya Kimura, Moo Seong Kim, Yi Kai Zhou, Nobuaki Teraguchi, Akira Suzuki, Akira Yanase und Hajime Asahi. „Emission spectra from AlN and GaN doped with rare earth elements“. Journal of Alloys and Compounds 408-412 (Februar 2006): 717–20. http://dx.doi.org/10.1016/j.jallcom.2005.01.091.
Der volle Inhalt der QuelleAfgan, Muhammad Sher, Zongyu Hou, Weiran Song, Jiachen Liu, Yuzhou Song, Weilun Gu und Zhe Wang. „On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy“. Chemosensors 10, Nr. 9 (25.08.2022): 350. http://dx.doi.org/10.3390/chemosensors10090350.
Der volle Inhalt der QuelleTepikina, Anna V., und Svetlana G. Vlasova. „Inorganic Composites Luminophors in Lithium-Borate Glasses with Rare-Earth Elements for White-Emitting Diodes“. Defect and Diffusion Forum 410 (17.08.2021): 764–69. http://dx.doi.org/10.4028/www.scientific.net/ddf.410.764.
Der volle Inhalt der QuelleUrakawa, R., W. Asano, M. Nishikawa, M. Kawahara, T. Nishi, D. Oshima, T. Kato und T. Ishibashi. „Magneto-optical property and magnetic anisotropy of (100) oriented R0.5Bi2.5Fe5O12 (R = Eu, Sm, and Pr) thin films prepared by metal–organic decomposition“. AIP Advances 12, Nr. 9 (01.09.2022): 095322. http://dx.doi.org/10.1063/5.0094475.
Der volle Inhalt der QuelleHuang, Zhaoqiang, Wenxuan Huang, Sheng Li, Bin Ni, Yalong Zhang, Mingwei Wang, Maolin Chen und Fuxiao Zhu. „Inversion Evaluation of Rare Earth Elements in Soil by Visible-Shortwave Infrared Spectroscopy“. Remote Sensing 13, Nr. 23 (01.12.2021): 4886. http://dx.doi.org/10.3390/rs13234886.
Der volle Inhalt der QuelleDissertationen zum Thema "Rare Earth Elements spectra"
Barbera, Marcella. „Behaviour of rare earth elements in the soil/Vitis Vinifera L. system : geochemical approach for food traceability“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS352.pdf.
Der volle Inhalt der QuelleThe geographic traceability of food products through the use of chemical markers is an important challenge to ensure quality and authenticity of food. In recent years, the behaviour of Rare Earth Elements (REE) has been identified as possible tool for food geographical identification based on their known capability of tracing pedo-genetic and petro-genetic processes. In this thesis, the behaviour of REE in the Soil/Vitis vinifera L. system has been explored using a geochemical approach. The goal is to understand if the normalized pattern of REE (REE*) can be a useful tool to trace the geographical origin of food. We focused on plants grown in both greenhouse and field using REE enriched and non-enriched substrates wondering if REE soil enrichments influence the growth of Vitis vinifera L. and the REE accumulation in plant organs. We found that the stress generated by REE enriched soil does not influence neither the plant mass nor the REE accumulation in leaves implying that REE polluted soils should not influence the amount of REE found in Vitis vinifera L food-products. We have, also, demonstrated that that the REE* in plant organs t trace enriched soil substrates discriminating plants from different soils of growth. This work allows to propose that REE* as potential marker for identifying the substrate where Vitis vinifera L. growth. Finally, discrimination of substrate enrichments suggests that REE* is a potential tool for quality and safety of other ecosystems. Our experimental investigation improves our knowledge on REE uptake in soil-Vitis vinifera L. system, highlighting the potential use of REE as biogeochemical tracers of environmental conditions
La tracciabilità geografica dei prodotti alimentari, attraverso l'uso di traccianti chimici, è una sfida importante per garantire la qualità e l'autenticità degli alimenti. Negli ultimi anni, il comportamento degli Elementi delle Terre Rare (REE) è stato identificato come possibile strumento per l'identificazione geografica degli alimenti, sulla base della nota proprietà di tracciare i processi pedo-genetici e petro-genetici. In questa tesi, il comportamento dei REE nel sistema Suolo/Vitis vinifera L. è stato esplorato utilizzando un approccio geochimico. L'obiettivo è capire se il modello normalizzato di REE (REE*) può essere uno strumento utile per tracciare l'origine geografica degli alimenti. Le REE possono essere accumulate nelle piante mantenendo la loro distribuzione nel passaggio dal suolo alle foglie o ai frutti, anche se le foglie possono incorporare i metalli lisciviati dalle particelle di polvere atmosferica in particolari condizioni ambientali. Tuttavia, il meccanismo di trasferimento di REE dal suolo alle piante è poco conosciuto. Ci siamo concentrati su piante cresciute sia in serra che in campo usando substrati arricchiti e non arricchiti di REE chiedendoci se gli arricchimenti del suolo di REE influenzassero la crescita di Vitis vinifera L. e l'accumulo di REE negli organi della pianta, testando l'uso di REE* come discriminatore di piccole quantità di REE nel suolo. Inoltre, abbiamo valutato il ruolo giocato dallo xylema nel trasferimento di REE e il possibile impatto fisiologico nella Vitis vinifera L. Abbiamo trovato che lo stress generato dal suolo arricchito di REE non influenza né la massa della pianta né l'accumulo di REE nelle foglie e abbiamo dimostrato che le REE* negli organi della pianta sono in grado di tracciare le condizioni del suolo arricchito discriminando le condizioni ambientali di crescita della Vitis vinifera L. Poiché REE* può essere usato per differenziare le piante da diversi terreni di crescita, proponiamo che l'uso di REE* sia un potenziale marcatore per identificare il substrato di crescita di Vitis vinifera L. Dal nostro lavoro si possono dedurre importanti implicazioni dal punto di vista ambientale. Poiché la quantità iniziale di REE nei substrati non influenza la quantità accumulata nelle foglie, eventuali suoli inquinati da REE non dovrebbero influenzare significativamente la quantità di REE trovata nei prodotti alimentari di Vitis vinifera L. Infine, la capacità di discriminare degli arricchimenti del substrato suggerisce che REE* può essere uno strumento potenziale per valutare la qualità e la sicurezza di altri ecosistemi. La nostra indagine sperimentale migliora le nostre conoscenze sull'assorbimento di REE nel sistema Suolo/Vitis vinifera L. evidenziando il potenziale uso di REE come traccianti biogeochimici delle condizioni ambientali
BARBERA, Marcella. „Behaviour of REE in the soil/Vitis Vinifera L. system. Geochemical Approach for Food Traceability“. Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/526118.
Der volle Inhalt der QuelleBroom-Fendley, Sam Louis. „Targeting heavy rare earth elements in carbonatite complexes“. Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18490.
Der volle Inhalt der QuelleSimpson, John Andrew. „Magnetic properties of rare-earth elements and superlattices“. Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308539.
Der volle Inhalt der QuelleOtu, Emmanuel Ogbonna. „Liquid-liquid extraction studies of the rare earth elements“. Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5804.
Der volle Inhalt der QuelleKooy, Hendrikus Johannes. „Two-body operators and rare-earth spectroscopy“. Thesis, [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13787330.
Der volle Inhalt der QuelleCui, Jianlan. „Surface Spectroscopic Investigation of Rare Earth Minerals Flotation“. Thesis, Griffith University, 2016. http://hdl.handle.net/10072/367258.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Dudley, R. „Magnetoelastic properties and microstructure of rare-earth/iron compounds“. Thesis, University of Brighton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379867.
Der volle Inhalt der QuelleLozano, Letellier Alba. „Geochemistry of rare earth elements in acid mine drainage precipitates“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668458.
Der volle Inhalt der QuelleLas tierras raras (en inglés rare earth elements, REE) son conocidas como el conjunto de la serie de los lantánidos (La-Lu), itrio (Y) y escandio(Sc). Las tierras raras son materiales indispensables para las industrias modernas y en especial para las tecnologías verdes (aerogeneradores, baterías, láseres, catalizadores, etc.). Sin embargo a pesar de su gran demanda mundial, su abastecimiento es limitado, por lo que han sido catalogadas por la UE como materias primas críticas (Critical Raw Materials). Con el objetivo de asegurar el abastecimiento de REE en el futuro, en los últimos años se ha promovido la búsqueda de fuentes alternativas de estos elementos en todo el mundo. El drenaje ácido de mina (en inglés acid mine drainage, AMD) producido por la meteorización de sulfuros de Fe, tiene un alto poder de lixiviación de las rocas, por lo que las aguas afectadas adquieren elevadas concentraciones en disolución de Fe, Al, SO4 y otros metales, como las REE. Así, las concentraciones de REE en AMD son entre dos y tres órdenes de magnitud superiores al resto de las aguas naturales y pueden suponer una fuente complementaria de recuperación de REE. El aumento de pH del AMD por mezcla con aguas neutras da lugar a la precipitación en los cauces de los ríos de oxy-hidroxisulfatos de hierro (schwertmannita), a partir de pH 3-3.5, y de aluminio (basaluminita), a partir de pH 4-4.5; acompañado de la eliminación de las tierras raras. Debido a su acidez y carga metálica, el drenaje ácido de mina presenta un problema medioambiental de primera magnitud, por lo que se han desarrollado diferentes sistemas de tratamiento para minimizar su impacto. El sistema de tratamiento pasivo Disperse Alkaline Substrate (DAS) produce la neutralización de las aguas ácidas por la disolución de la calcita presente en el sistema, permitiendo la precipitación secuencial, de schwertmannita y basaluminita. Las tierras raras quedan retenidas preferentemente en el residuo enriquecido en basaluminita. A pesar de ello, aún no existen estudios que describan la adsorción de tierras raras tanto en basaluminita como schwertmannita en estos ambientes. En esta tesis se estudia el mecanismo de retención de las tierras raras mediante adsorción en minerales sintéticos de basaluminita y schwertmannita, en función del pH y del contenido de sulfato disuelto. Con los resultados experimentales obtenidos, se propone un modelo termodinámico de adsorción para predecir y explicar la movilidad de las tierras raras observada en mezclas de AMD con aguas neutras y en un sistema de tratamiento pasivo. La basaluminita y la schwertmannita presentan un carácter nanocristalino. Es conocido que la schwertmannita se transforma en goethita en semanas, liberando sulfato. Sin embargo, nada se sabe de la basaluminita y su posible transformación a otros minerales de Al más cristalinos. De este modo, la caracterización del orden local de la basaluminita a diferentes valores de pH y sulfato se expone en primer lugar. Dependiendo del pH y el sulfato en disolución, la basaluminita se transforma en diferentes grados a nanoboehmita en semanas, pero tiende a estabilizarse con la presencia de sulfato en solución. Los experimentos de adsorción en basaluminita y schwertmannita con diferentes concentraciones de SO4 realizados para cada mineral y en rangos de 3-7 de pH han demostrado que la adsorción es fuertemente dependiente del pH, y en menor medida del sulfato. La adsorción de los lantánidos y del itrio es efectiva a pH 5, mientras que la del escandio comienza a pH 4. Debido a las altas concentraciones de sulfato en aguas ácidas, las especies acuosas predominantes de las tierras raras son los complejos con sulfato, MSO4+. Además del complejo sulfato, el Sc presenta importantes proporciones de Sc(OH)2+ en solución. En función de la dependencia del pH y de la importancia de la especiación acuosa, se propone un modelo de complejación superficial donde la especie acuosa predominante (Mz+) se adsorbe a la superficie libre el mineral, XOH, cumpliendo la siguiente reacción: La adsorción de los lantánidos y del itrio se produce a través del intercambio de uno o dos protones de la superficie de la basaluminita o de la schwertmannita, respectivamente, con los complejos sulfato acuoso, formando complejos superficiales monodentados con el mineral de aluminio y bidentados con el de hierro. En el caso del Sc, las especies acuosas ScSO4+ y Sc(OH)2+ forman complejos superficiales bidentados con ambos minerales. Complementando el modelo propuesto, el análisis de EXAFS del complejo YSO4+ adsorbido en la superficie basaluminita sugiere la formación de un complejo monodentado de esfera interna, coincidiendo con el modelo termodinámico propuesto. El modelo de complejación superficial, una vez validado, ha permitido evaluar y predecir la movilidad de REE en los sistemas de tratamiento pasivos y en zonas de mezcla de aguas ácidas con aportes alcalinos estudiados en el campo. La preferente retención de las tierras raras en la zona de la basaluminita precipitada en los sistemas de tratamiento pasivo ocurre por adsorción de las mismas a pH entre 5-6. La ausencia de tierras raras en la zona de schwertmannita se debe al bajo pH de su formación, inferior a 4, que impide la adsorción de las mismas. Sin embargo, debido a su menor pH de adsorción, una fracción de Sc puede quedar retenida en la schwertmannita. El modelo también predice correctamente la ausencia de REE en los precipitados de schwertmannita y el enriquecimiento de las tierras raras pesadas e intermedias respecto a las ligeras en los precipitados de basaluminita recogidos en el campo en las zonas de mezcla de aguas. Sin embargo, se ha observado una sistemática sobreestimación del fraccionamiento de las tierras raras en los precipitados de basaluminita. Este hecho se debe principalmente a que la precipitación del mineral no ocurre de forma síncrona con la adsorción, precipitando la basaluminita a partir de pH 4 y adsorbiendo tierras raras a pH más altos, entre 5 y 7, cuando las partículas sólidas han sido parcialmente dispersadas.
Redling, Kerstin. „Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry“. Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-59362.
Der volle Inhalt der QuelleBücher zum Thema "Rare Earth Elements spectra"
Benli, Huang, Hrsg. An atlas of high resolution spectra of rare earth elements for inductively coupled plasma atomic emission spectroscopy. Cambridge: Royal Society of Chemistry, 2000.
Den vollen Inhalt der Quelle findenZepf, Volker. Rare Earth Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35458-8.
Der volle Inhalt der Quelle1927-, Gürs K., Bergmann Hartmut, Koeppel Claus und Pscheidl Helmut, Hrsg. Rare earth elements. 8. Aufl. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenVoncken, J. H. L. The Rare Earth Elements. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26809-5.
Der volle Inhalt der QuelleBochkarev, M. N., L. N. Zakharov und G. S. Kalinina. Organoderivatives of Rare Earth Elements. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0361-9.
Der volle Inhalt der QuelleHedrick, James B. Rare earth elements and yttrium. [Washingtion, D.C.?]: Bureau of Mines, U.S. Dept. of the Interior, 1985.
Den vollen Inhalt der Quelle findenN, Zakharov L., und Kalinina G. S, Hrsg. Organoderivatives of rare earth elements. Dordrecht: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenZhang, Jack, Baodong Zhao und Bryan Schreiner. Separation Hydrometallurgy of Rare Earth Elements. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28235-0.
Der volle Inhalt der QuelleRoesky, Peter W., Hrsg. Molecular Catalysis of Rare-Earth Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12811-0.
Der volle Inhalt der QuelleWijn, H. P. J., Hrsg. Rare Earth Elements, Alloys and Compounds. Berlin/Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b79359.
Der volle Inhalt der QuelleBuchteile zum Thema "Rare Earth Elements spectra"
Mariano, A. N. „Appendix: CATHODOLUMINESENCE EMISSION SPECTRA OF RARE EARTH ELEMENT ACTIVATORS IN MINERALS“. In Geochemistry and Mineralogy of Rare Earth Elements, herausgegeben von Bruce R. Lipin und G. A. McKay, 339–50. Berlin, Boston: De Gruyter, 1989. http://dx.doi.org/10.1515/9781501509032-015.
Der volle Inhalt der QuelleLazarev, A. N. „Spectra and Crystal Chemistry of the Silicates of the Rare-Earth Elements“. In Vibrational Spectra and Structure of Silicates, 205–60. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4803-8_5.
Der volle Inhalt der QuelleKurtz, Wolfgang, und Hans Vanecek. „Rare Earth Elements“. In W Tungsten, 20–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-08690-2_8.
Der volle Inhalt der QuelleTing, Ming Hwa. „Rare Earth Elements“. In Mining in the Asia-Pacific, 177–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61395-6_11.
Der volle Inhalt der QuellePinti, Daniele L. „Rare Earth Elements“. In Encyclopedia of Astrobiology, 1432–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1348.
Der volle Inhalt der QuellePinti, Daniele L. „Rare Earth Elements“. In Encyclopedia of Astrobiology, 2148–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1348.
Der volle Inhalt der QuelleWall, Frances. „Rare earth elements“. In Critical Metals Handbook, 312–39. Oxford: John Wiley & Sons, 2013. http://dx.doi.org/10.1002/9781118755341.ch13.
Der volle Inhalt der QuelleSpellman, Frank R. „Rare Earth Elements“. In The Science of Rare Earth Elements, 43–45. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003350811-4.
Der volle Inhalt der QuellePinti, Daniele L. „Rare Earth Elements“. In Encyclopedia of Astrobiology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1348-4.
Der volle Inhalt der QuellePinti, Daniele L. „Rare Earth Elements“. In Encyclopedia of Astrobiology, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1348-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rare Earth Elements spectra"
Bilyi, Mykola U., M. Diab, M. A. Krysyuk, L. M. Lymarenko, Z. T. Moroz und Sergiy G. Nedelko. „Establishment of admixtures of heavy and rare-earth elements in cadmium tungstate on luminescence spectra“. In International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, herausgegeben von Sergey V. Svechnikov und Mikhail Y. Valakh. SPIE, 1995. http://dx.doi.org/10.1117/12.226192.
Der volle Inhalt der QuelleMartin, Madhavi Z., Robert V. Fox, Andrzej W. Miziolek, Frank C. DeLucia und Nicolas André. „Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy“. In SPIE Sensing Technology + Applications, herausgegeben von Mark A. Druy, Richard A. Crocombe und David P. Bannon. SPIE, 2015. http://dx.doi.org/10.1117/12.2178192.
Der volle Inhalt der QuelleSasaki, Akira. „Modeling of the emission spectrum from Sn to rare-earth elements for the extreme ultra-violet lithography“. In Photomask Japan 2023: XXIX Symposium on Photomask and Next-Generation Lithography Mask Technology, herausgegeben von Yosuke Kojima. SPIE, 2023. http://dx.doi.org/10.1117/12.3012437.
Der volle Inhalt der QuelleGhanbari, Yasaman. „Quantification of Rare Earth Elements.“ In Proposed for presentation at the LDRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884183.
Der volle Inhalt der QuelleWise, Paige. „RARE EARTH ELEMENTS ADSORPTION ON KAOLINITE“. In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-368035.
Der volle Inhalt der QuelleMartinez Bejarano, Cesar. „Reactors and Rare Earth Elements Extraction Systems.“ In Proposed for presentation at the DRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884112.
Der volle Inhalt der QuelleMorones, Isaiah. „Opportunities and Challenges of Rare Earth Elements.“ In Proposed for presentation at the LDRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884661.
Der volle Inhalt der QuelleYatskiv, R., J. Grym, K. Zdansky, L. Pekarek und J. Zavadil. „Growth of InP crystals with rare-earth elements“. In Related Materials (IPRM). IEEE, 2009. http://dx.doi.org/10.1109/iciprm.2009.5012450.
Der volle Inhalt der QuelleChurchill, Dakota, Michael Manga, Michael Manga, Shaul Hurwitz, Shaul Hurwitz, Sara Peek, Sara Peek, Richard M. Conrey und Richard M. Conrey. „RARE EARTH ELEMENTS IN YELLOWSTONE’S SILICEOUS SINTER DEPOSITS“. In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-354438.
Der volle Inhalt der QuelleHedrick, Gabrielle. „Towards Mining Rare Earth Elements on the Moon“. In 2023 IEEE Aerospace Conference. IEEE, 2023. http://dx.doi.org/10.1109/aero55745.2023.10116027.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Rare Earth Elements spectra"
Huleatt, Mike. Australian resource reviews: rare earth elements 2019. Geoscience Australia, 2019. http://dx.doi.org/10.11636/9781925848441.
Der volle Inhalt der QuelleRomero, Jared L., und Samuel Adam McCord. Rare earth elements : procurement, application, and reclamation. Office of Scientific and Technical Information (OSTI), Juli 2012. http://dx.doi.org/10.2172/1051724.
Der volle Inhalt der QuelleBRIGMON, ROBIN. LDRD-2022-00108: BIOMINING RARE EARTH ELEMENTS. Office of Scientific and Technical Information (OSTI), Oktober 2022. http://dx.doi.org/10.2172/1894914.
Der volle Inhalt der QuelleSkone, Timothy J. Separation of rare earth elements using ion exchange. Office of Scientific and Technical Information (OSTI), Juli 2014. http://dx.doi.org/10.2172/1509123.
Der volle Inhalt der QuelleBopp, Karl. An Integrated Rare Earth Elements Supply Chain Strategy. Fort Belvoir, VA: Defense Technical Information Center, Februar 2011. http://dx.doi.org/10.21236/ada547354.
Der volle Inhalt der QuelleHasler, Abigail, und David Reed. Recovery of Rare Earth Elements from Bioleachates by Precipitation. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1668825.
Der volle Inhalt der QuelleSadan, Mandy, Dan Smyer Yü, Dan Seng Lawn, David Brown und Ronghui Zhou. Rare Earth Elements, Global Inequalities, and the ‘Just Transition’. The British Academy, Juni 2022. http://dx.doi.org/10.5871/just-transitions-s-i/m-s.
Der volle Inhalt der QuelleHurst, Cindy. China's Rare Earth Elements Industry: What Can the West Learn? Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada525378.
Der volle Inhalt der QuelleSutterlin, William. RECOVERY OF RARE EARTH ELEMENTS FROM COAL MINING WASTE MATERIALS. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1560384.
Der volle Inhalt der QuelleBurton, Jr, und Robert E. Implications of Competition for Rare Earth Elements (REE) in Africa. Fort Belvoir, VA: Defense Technical Information Center, März 2011. http://dx.doi.org/10.21236/ada553070.
Der volle Inhalt der Quelle