Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ranking data“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ranking data" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ranking data"
Banihashemi, Sayyid Ali, und Mohammad Khalilzadeh. „A new approach for ranking efficient DMUs with data envelopment analysis“. World Journal of Engineering 17, Nr. 4 (04.06.2020): 573–83. http://dx.doi.org/10.1108/wje-03-2020-0092.
Der volle Inhalt der QuelleZar, Jerrold H. „Ranking data with BASIC“. Behavior Research Methods, Instruments, & Computers 17, Nr. 1 (Januar 1985): 142. http://dx.doi.org/10.3758/bf03200918.
Der volle Inhalt der QuelleJestes, Jeffrey, Jeff M. Phillips, Feifei Li und Mingwang Tang. „Ranking large temporal data“. Proceedings of the VLDB Endowment 5, Nr. 11 (Juli 2012): 1412–23. http://dx.doi.org/10.14778/2350229.2350257.
Der volle Inhalt der QuelleGrossman, J. P., und Gregory Minton. „Inversions in ranking data“. Discrete Mathematics 309, Nr. 20 (Oktober 2009): 6149–51. http://dx.doi.org/10.1016/j.disc.2009.04.030.
Der volle Inhalt der QuelleIvanov, A. A., und N. P. Yashina. „Big Data Analysis in Multi-Criteria Choice Problems“. Моделирование и анализ данных 12, Nr. 2 (2022): 5–19. http://dx.doi.org/10.17759/mda.2022120201.
Der volle Inhalt der QuelleDoğan, Güleda, und Umut Al. „Is it possible to rank universities using fewer indicators? A study on five international university rankings“. Aslib Journal of Information Management 71, Nr. 1 (21.01.2019): 18–37. http://dx.doi.org/10.1108/ajim-05-2018-0118.
Der volle Inhalt der QuelleWang, Jingyan, und Nihar B. Shah. „Ranking and Rating Rankings and Ratings“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 09 (03.04.2020): 13704–7. http://dx.doi.org/10.1609/aaai.v34i09.7126.
Der volle Inhalt der QuelleRashid, Mahbub. „DesignIntelligence and the Ranking of Professional Architecture Programs: Issues, Impacts, and Suggestions“. Architecture 2, Nr. 3 (05.09.2022): 593–615. http://dx.doi.org/10.3390/architecture2030032.
Der volle Inhalt der QuelleAlvo, Mayer, und Kadir Ertas. „Graphical methods for ranking data“. Canadian Journal of Statistics 20, Nr. 4 (Dezember 1992): 469–82. http://dx.doi.org/10.2307/3315616.
Der volle Inhalt der QuelleBrady, Henry E. „Dimensional Analysis of Ranking Data“. American Journal of Political Science 34, Nr. 4 (November 1990): 1017. http://dx.doi.org/10.2307/2111470.
Der volle Inhalt der QuelleDissertationen zum Thema "Ranking data"
Vanichbuncha, Tita. „Modelling partial ranking data“. Thesis, University of Kent, 2017. https://kar.kent.ac.uk/66664/.
Der volle Inhalt der QuelleLo, Siu-ming, und 盧小皿. „Factor analysis for ranking data“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B30162464.
Der volle Inhalt der QuelleLo, Siu-ming. „Factor analysis for ranking data /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20792967.
Der volle Inhalt der Quelle林漢坤 und Hon-kwan Lam. „Analysis of ranking data with covariates“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215476.
Der volle Inhalt der QuelleQi, Fang, und 齊放. „Some topics in modeling ranking data“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/209210.
Der volle Inhalt der Quellepublished_or_final_version
Statistics and Actuarial Science
Doctoral
Doctor of Philosophy
Lam, Hon-kwan. „Analysis of ranking data with covariates /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19943313.
Der volle Inhalt der QuelleSun, Mingxuan. „Visualizing and modeling partial incomplete ranking data“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45793.
Der volle Inhalt der QuelleLee, Hong, und 李匡. „Model-based decision trees for ranking data“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45149707.
Der volle Inhalt der QuelleKorba, Anna. „Learning from ranking data : theory and methods“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT009/document.
Der volle Inhalt der QuelleRanking data, i.e., ordered list of items, naturally appears in a wide variety of situations, especially when the data comes from human activities (ballots in political elections, survey answers, competition results) or in modern applications of data processing (search engines, recommendation systems). The design of machine-learning algorithms, tailored for these data, is thus crucial. However, due to the absence of any vectorial structure of the space of rankings, and its explosive cardinality when the number of items increases, most of the classical methods from statistics and multivariate analysis cannot be applied in a direct manner. Hence, a vast majority of the literature rely on parametric models. In this thesis, we propose a non-parametric theory and methods for ranking data. Our analysis heavily relies on two main tricks. The first one is the extensive use of the Kendall’s tau distance, which decomposes rankings into pairwise comparisons. This enables us to analyze distributions over rankings through their pairwise marginals and through a specific assumption called transitivity, which prevents cycles in the preferences from happening. The second one is the extensive use of embeddings tailored to ranking data, mapping rankings to a vector space. Three different problems, unsupervised and supervised, have been addressed in this context: ranking aggregation, dimensionality reduction and predicting rankings with features.The first part of this thesis focuses on the ranking aggregation problem, where the goal is to summarize a dataset of rankings by a consensus ranking. Among the many ways to state this problem stands out the Kemeny aggregation method, whose solutions have been shown to satisfy many desirable properties, but can be NP-hard to compute. In this work, we have investigated the hardness of this problem in two ways. Firstly, we proposed a method to upper bound the Kendall’s tau distance between any consensus candidate (typically the output of a tractable procedure) and a Kemeny consensus, on any dataset. Then, we have casted the ranking aggregation problem in a rigorous statistical framework, reformulating it in terms of ranking distributions, and assessed the generalization ability of empirical Kemeny consensus.The second part of this thesis is dedicated to machine learning problems which are shown to be closely related to ranking aggregation. The first one is dimensionality reduction for ranking data, for which we propose a mass-transportation approach to approximate any distribution on rankings by a distribution exhibiting a specific type of sparsity. The second one is the problem of predicting rankings with features, for which we investigated several methods. Our first proposal is to adapt piecewise constant methods to this problem, partitioning the feature space into regions and locally assigning as final label (a consensus ranking) to each region. Our second proposal is a structured prediction approach, relying on embedding maps for ranking data enjoying theoretical and computational advantages
Gregory, Machon. „Shape identication and ranking in temporal data sets“. College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9319.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Bücher zum Thema "Ranking data"
Hua, Ming, und Jian Pei. Ranking Queries on Uncertain Data. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9380-9.
Der volle Inhalt der QuelleAlvo, Mayer, und Philip L. H. Yu. Statistical Methods for Ranking Data. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1471-5.
Der volle Inhalt der QuelleD, Pei Jian Ph, Hrsg. Ranking queries on uncertain data. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenYu, Philip. L. H., author, Hrsg. Statistical methods for ranking data. New York: Springer, 2014.
Den vollen Inhalt der Quelle findenFligner, Michael A., und Joseph S. Verducci, Hrsg. Probability Models and Statistical Analyses for Ranking Data. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-2738-0.
Der volle Inhalt der QuelleAnalyzing and modeling rank data. London: Chapman & Hall, 1995.
Den vollen Inhalt der Quelle findenCritchlow, Douglas E. Metric methods for analyzing partially ranked data. New York: Springer-Verlag, 1985.
Den vollen Inhalt der Quelle findenMetric methods for analyzing partially ranked data. Berlin: Springer-Verlag, 1985.
Den vollen Inhalt der Quelle findenMoskowitz, Daniel B. Ranking hospitals and physicians: The use and misuse of performance data. Washington, DC: Faulkner & Gray's Health Information Center, 1994.
Den vollen Inhalt der Quelle findenSchulz, E. Matthew. Controlling for rater effects when comparing survey items with incomplete Likert data. Iowa City, Iowa: ACT, Inc., 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ranking data"
Shikhman, Vladimir, und David Müller. „Ranking“. In Mathematical Foundations of Big Data Analytics, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62521-7_1.
Der volle Inhalt der QuelleJin, Wei, Danhuai Guo, Li-kun Zhao und Ji-Chao Li. „Performance Ranking Based on Bézier Ranking Principal Curve“. In Spatial Data and Intelligence, 208–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69873-7_15.
Der volle Inhalt der QuelleWu, Shengli. „Ranking-Based Fusion“. In Data Fusion in Information Retrieval, 135–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28866-1_7.
Der volle Inhalt der QuelleHuang, Shuai, und Houtao Deng. „Recognition Logistic Regression & Ranking“. In Data Analytics, 37–68. First edition. | Boca Raton : CRC Press, 2021.: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003102656-ch3.
Der volle Inhalt der QuelleRendle, Steffen. „Ranking from Incomplete Data“. In Context-Aware Ranking with Factorization Models, 19–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16898-7_3.
Der volle Inhalt der QuelleAlvo, Mayer, und Philip L. H. Yu. „Exploratory Analysis of Ranking Data“. In Statistical Methods for Ranking Data, 7–21. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1471-5_2.
Der volle Inhalt der QuelleAlvo, Mayer, und Philip L. H. Yu. „Probability Models for Ranking Data“. In Statistical Methods for Ranking Data, 149–69. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1471-5_8.
Der volle Inhalt der QuelleAlvo, Mayer, und Philip L. H. Yu. „Probit Models for Ranking Data“. In Statistical Methods for Ranking Data, 171–98. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1471-5_9.
Der volle Inhalt der QuelleHua, Ming, und Jian Pei. „Ranking Queries on Probabilistic Linkages“. In Ranking Queries on Uncertain Data, 151–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9380-9_7.
Der volle Inhalt der QuelleKhalid, Majdi, Indrakshi Ray und Hamidreza Chitsaz. „Confidence-Weighted Bipartite Ranking“. In Advanced Data Mining and Applications, 35–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49586-6_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ranking data"
Prasad, Ananth Krishna, Morteza Rezaalipour, Masoud Dehyadegari und Mahdi Nazm Bojnordi. „Memristive Data Ranking“. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021. http://dx.doi.org/10.1109/hpca51647.2021.00045.
Der volle Inhalt der QuelleXin, Dong, und Jiawei Han. „Integrating OLAP and Ranking: The Ranking-Cube Methodology“. In 2007 IEEE 23rd International Conference on Data Engineering Workshop. IEEE, 2007. http://dx.doi.org/10.1109/icdew.2007.4401000.
Der volle Inhalt der QuelleYakout, Mohamed, Ahmed K. Elmagarmid und Jennifer Neville. „Ranking for data repairs“. In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). IEEE, 2010. http://dx.doi.org/10.1109/icdew.2010.5452767.
Der volle Inhalt der QuelleLi, Feifei, Ke Yi und Jeffrey Jestes. „Ranking distributed probabilistic data“. In the 35th SIGMOD international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1559845.1559885.
Der volle Inhalt der QuelleAgarwal, Shivani. „Ranking on graph data“. In the 23rd international conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1143844.1143848.
Der volle Inhalt der QuelleLong, Bo, Yi Chang, Srinivas Vadrevu, Shuang Hong Yang und Zhaohui Zheng. „Ranking with auxiliary data“. In the 19th ACM international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1871437.1871654.
Der volle Inhalt der QuelleWang, Yue, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang und Qiaozhu Mei. „Beyond Ranking“. In WSDM 2016: Ninth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2835776.2835824.
Der volle Inhalt der QuelleFenwick, P. „Symbol ranking text compressors“. In Proceedings DCC '97. Data Compression Conference. IEEE, 1997. http://dx.doi.org/10.1109/dcc.1997.582093.
Der volle Inhalt der QuelleChareyron, Gael, Berengere Branchet und Sebastien Jacquot. „A new area tourist ranking method“. In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7364126.
Der volle Inhalt der QuelleAgrawal, Rajeev, William I. Grosky und Farshad Fotouhi. „Ranking Privacy Policy“. In 2007 IEEE 23rd International Conference on Data Engineering Workshop. IEEE, 2007. http://dx.doi.org/10.1109/icdew.2007.4400991.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ranking data"
Biersdorf, John, Ha Bui, Tatsuya Sakurahara, Seyed Reihani, Chris LaFleur, David Luxat, Steven Prescott und Zahra Mohaghegh. Risk Importance Ranking of Fire Data Parameters to Enhance Fire PRA Model Realism. Office of Scientific and Technical Information (OSTI), Mai 2020. http://dx.doi.org/10.2172/1632319.
Der volle Inhalt der QuelleBazylik, Sergei, Magne Mogstad, Joseph Romano, Azeem Shaikh und Daniel Wilhelm. Finite- and Large-Sample Inference for Ranks using Multinomial Data with an Application to Ranking Political Parties. Cambridge, MA: National Bureau of Economic Research, November 2021. http://dx.doi.org/10.3386/w29519.
Der volle Inhalt der QuelleJette, S. J., D. A. Lamar, T. J. McLaughlin, D. R. Sherwood, N. C. Van Houten, R. D. Stenner, K. H. Cramer und K. A. Higley. Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 3: Unplanned-release sites (HISS data base). Office of Scientific and Technical Information (OSTI), Oktober 1988. http://dx.doi.org/10.2172/6560414.
Der volle Inhalt der QuelleJette, S. J., D. A. Lamar, T. J. McLaughlin, D. R. Sherwood, N. C. Van Houten, R. D. Stenner, K. H. Cramer und K. A. Higley. Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 2: Engineered-facility sites (HISS data base). Office of Scientific and Technical Information (OSTI), Oktober 1988. http://dx.doi.org/10.2172/6574546.
Der volle Inhalt der QuelleGhasemi, H., und T. Allen. Selection and ranking of groundmotion models for the 2018 National Seismic Hazard Assessment of Australia: summary of ground-motion data, methodology and outcomes. Geoscience Australia, 2018. http://dx.doi.org/10.11636/record.2018.029.
Der volle Inhalt der QuelleWu, Ling, Tao Zhang, Yao Wang, Xiao Ke Wu, Tin Chiu Li, Pui Wah Chung und Chi Chiu Wang. Polymorphisms and premature ovarian insufficiency and failure: A comprehensive meta-analysis update, subgroup, ranking, and network analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Januar 2022. http://dx.doi.org/10.37766/inplasy2022.1.0052.
Der volle Inhalt der QuelleAiken, Catherine, James Dunham und Remco Zwetsloot. Immigration Pathways and Plans of AI Talent. Center for Security and Emerging Technology, September 2020. http://dx.doi.org/10.51593/20200013.
Der volle Inhalt der QuelleShinn, J. H., S. A. Martins, P. L. Cederwall und L. B. Gratt. Smokes and obscurants: A health and environmental effects data base assessment: A first-order, environmental screening and ranking of Army smokes and obscurants: Phase 1 report. Office of Scientific and Technical Information (OSTI), März 1985. http://dx.doi.org/10.2172/6068996.
Der volle Inhalt der QuelleShapovalov, Yevhenii B., Viktor B. Shapovalov und Vladimir I. Zaselskiy. TODOS as digital science-support environment to provide STEM-education. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3250.
Der volle Inhalt der QuelleMayfield, Colin. Higher Education in the Water Sector: A Global Overview. United Nations University Institute for Water, Environment and Health, Mai 2019. http://dx.doi.org/10.53328/guxy9244.
Der volle Inhalt der Quelle