Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Range-Only-SLAM (Simultaneous Localization and Mapping)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Range-Only-SLAM (Simultaneous Localization and Mapping)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Range-Only-SLAM (Simultaneous Localization and Mapping)"
Tsubouchi, Takashi. „Introduction to Simultaneous Localization and Mapping“. Journal of Robotics and Mechatronics 31, Nr. 3 (20.06.2019): 367–74. http://dx.doi.org/10.20965/jrm.2019.p0367.
Der volle Inhalt der QuelleTorres-González, A., J. R. Martinez-de Dios, A. Jiménez-Cano und A. Ollero. „An Efficient Fast-Mapping SLAM Method for UAS Applications Using Only Range Measurements“. Unmanned Systems 04, Nr. 02 (April 2016): 155–65. http://dx.doi.org/10.1142/s2301385016500035.
Der volle Inhalt der QuelleKim, Jung-Hee, und Doik Kim. „Computationally Efficient Cooperative Dynamic Range-Only SLAM Based on Sum of Gaussian Filter“. Sensors 20, Nr. 11 (10.06.2020): 3306. http://dx.doi.org/10.3390/s20113306.
Der volle Inhalt der QuelleXu, S., Z. Ji, D. T. Pham und F. Yu. „Simultaneous localization and mapping: swarm robot mutual localization and sonar arc bidirectional carving mapping“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, Nr. 3 (10.09.2010): 733–44. http://dx.doi.org/10.1243/09544062jmes2239.
Der volle Inhalt der QuelleRASHIDI, ALI JABAR, und SAEED MOHAMMADLOO. „SIMULTANEOUS COOPERATIVE LOCALIZATION FOR AUVs USING RANGE-ONLY SENSORS“. International Journal of Information Acquisition 08, Nr. 02 (Juni 2011): 117–32. http://dx.doi.org/10.1142/s0219878911002380.
Der volle Inhalt der QuelleHsu, Chen-Chien, Wei-Yen Wang, Tung-Yuan Lin, Yin-Tien Wang und Teng-Wei Huang. „Enhanced Simultaneous Localization and Mapping (ESLAM) for Mobile Robots“. International Journal of Humanoid Robotics 14, Nr. 02 (16.04.2017): 1750007. http://dx.doi.org/10.1142/s0219843617500074.
Der volle Inhalt der QuelleHerranz, F., A. Llamazares, E. Molinos, M. Ocaña und M. A. Sotelo. „WiFi SLAM algorithms: an experimental comparison“. Robotica 34, Nr. 4 (18.07.2014): 837–58. http://dx.doi.org/10.1017/s0263574714001908.
Der volle Inhalt der QuelleWang, Hongling, Chengjin Zhang, Yong Song und Bao Pang. „Information-Fusion Methods Based Simultaneous Localization and Mapping for Robot Adapting to Search and Rescue Postdisaster Environments“. Journal of Robotics 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/4218324.
Der volle Inhalt der QuelleMcGarey, Patrick, Kirk MacTavish, François Pomerleau und Timothy D. Barfoot. „TSLAM: Tethered simultaneous localization and mapping for mobile robots“. International Journal of Robotics Research 36, Nr. 12 (Oktober 2017): 1363–86. http://dx.doi.org/10.1177/0278364917732639.
Der volle Inhalt der QuelleWu, Ming, Lin Lin Li, Cheng Jian Li, Hong Qiao Wang und Zhen Hua Wei. „Simultaneous Localization, Mapping and Detection of Objects for Mobile Robot Based on Information Fusion in Dynamic Environment“. Advanced Materials Research 1014 (Juli 2014): 319–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.319.
Der volle Inhalt der QuelleDissertationen zum Thema "Range-Only-SLAM (Simultaneous Localization and Mapping)"
Dahlin, Alfred. „Simultaneous Localization and Mapping for an Unmanned Aerial Vehicle Using Radar and Radio Transmitters“. Thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110645.
Der volle Inhalt der QuelleHERRERA, LUIS ERNESTO YNOQUIO. „MOBILE ROBOT SIMULTANEOUS LOCALIZATION AND MAPPING USING DP-SLAM WITH A SINGLE LASER RANGE FINDER“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34617@1.
Der volle Inhalt der QuelleCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez mais precisos, pequenos erros na medição são acumulados comprometendo a precisão na localização, sendo estes evidentes quando o robô retorna a uma posição inicial depois de percorrer um longo caminho. Assim, para melhoria do desempenho do SLAM é necessário representar a sua formulação usando teoria das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma instância do filtro de partículas conhecida como Rao-Blackwellized. Outra solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas 2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um medidor laser de distância por varredura, e pela sua precisão é bastante usado na correção do erro em odômetros. Este trabalho apresenta uma detalhada implementação destas três soluções para o SLAM, focalizado em ambientes fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em terrenos planos tais como em aplicações típicas de ambientes fechados. A representação dos mapas 2D é feita na forma de grade de ocupação. Por outro lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao invés de grade, para reduzir o custo computacional. É considerado um robô móvel equipado com apenas um LRF, sem nenhuma informação de odometria. O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô sem necessidade de odômetros ou outros sensores. Um simulador em Matlab é implementado para a geração de varreduras virtuais de um LRF em um ambiente 3D (virtual). A metodologia proposta é validada com os dados simulados, assim como com dados experimentais obtidos da literatura, demonstrando a possibilidade de construção de mapas 3D com apenas um sensor LRF.
Simultaneous Localization and Mapping (SLAM) is one of the most widely researched areas of Robotics. It addresses the mobile robot problem of generating a map without prior knowledge of the environment, while keeping track of its position. Although technology offers increasingly accurate position sensors, even small measurement errors can accumulate and compromise the localization accuracy. This becomes evident when programming a robot to return to its original position after traveling a long distance, based only on its sensor readings. Thus, to improve SLAM s performance it is necessary to represent its formulation using probability theory. The Extended Kalman Filter SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by far the most popular technique. Fast SLAM, on the other hand, solves some limitations of the EKFSLAM using an instance of the Rao-Blackwellized particle filter. Another successful solution is to use the DP-SLAM approach, which uses a grid representation and a hierarchical algorithm to build accurate 2D maps. All SLAM solutions require two types of sensor information: odometry and range measurement. Laser Range Finders (LRF) are popular range measurement sensors and, because of their accuracy, are well suited for odometry error correction. Furthermore, the odometer may even be eliminated from the system if multiple consecutive LRF scans are matched. This works presents a detailed implementation of these three SLAM solutions, focused on structured indoor environments. The implementation is able to map 2D environments, as well as 3D environments with planar terrain, such as in a typical indoor application. The 2D application is able to automatically generate a stochastic grid map. On the other hand, the 3D problem uses a point cloud representation of the map, instead of a 3D grid, to reduce the SLAM computational effort. The considered mobile robot only uses a single LRF, without any odometry information. A Genetic Algorithm is presented to optimize the matching of LRF scans taken at different instants. Such matching is able not only to map the environment but also localize the robot, without the need for odometers or other sensors. A simulation program is implemented in Matlab to generate virtual LRF readings of a mobile robot in a 3D environment. Both simulated readings and experimental data from the literature are independently used to validate the proposed methodology, automatically generating 3D maps using just a single LRF.
Huang, Henry. „Bearing-only SLAM : a vision-based navigation system for autonomous robots“. Queensland University of Technology, 2008. http://eprints.qut.edu.au/28599/.
Der volle Inhalt der QuelleWeber, Richard. „Automatisierte Integration von funkbasierten Sensornetzen auf Basis simultaner Lokalisierung und Kartenerstellung“. 2018. https://tud.qucosa.de/id/qucosa%3A75245.
Der volle Inhalt der QuelleThe aim of this work is the development of a method for the automated integration of Wireless Sensor Networks (WSN) into the respective application environment. The sensor networks realize there beside communication tasks above all the determination of location information. Therefore, the depot management in public transport is a typical application. Based on permanently available position coordinates of buses and trams as mobile objects in the traffic environment, a more efficient operational management is made possible. The database in this work is formed on the one hand by geometric relationships in the sensor network, which for reasons of availability are only described by pairwise distances between the mobile objects and the anchors permanently installed in the environment. On the other hand, existing digital map material in the form of vector and raster maps, e.g. obtained by GIS services, is used. The arguments for automation are obvious. First, the effort of position calibration should not scale with the number of anchors installed, which can only be automated. This at once eliminates symptomatic sources of error resulting from manual system integration. Secondly, automation should ensure real-time operation (e.g. recalibration and remote maintenance), eliminating costly maintenance and service. Initially, the developed method estimates relative position information for anchors and mobile objects from the sensor data by means of Range-Only Simultaneous Localization and Mapping (RO-SLAM). The method then merges this information within a cooperative map creation. From the relative, cooperative results and the available map material finally an application-specific absolute spatial outcome is generated. Based on semi-real sensor data and defined test scenarios, the results of the realized method evaluation demonstrate the functionality and performance of the developed method. They contain qualifying statements and also show statistically reliable limits of accuracy.:Abbildungsverzeichnis...............................................X Tabellenverzeichnis...............................................XII Abkürzungsverzeichnis............................................XIII Symbolverzeichnis................................................XVII 1 Einleitung........................................................1 1.1 Stand der Technik...............................................3 1.2 Entwickeltes Verfahren im Überblick.............................4 1.3 Wissenschaftlicher Beitrag......................................7 1.4 Gliederung der Arbeit...........................................8 2 Grundlagen zur Verfahrensumsetzung...............................10 2.1 Überblick zu funkbasierten Sensornetzen........................10 2.1.1 Aufbau und Netzwerk..........................................11 2.1.2 System- und Technologiemerkmale..............................12 2.1.3 Selbstorganisation...........................................13 2.1.4 Räumliche Beziehungen........................................14 2.2 Umgebungsrepräsentation........................................18 2.2.1 Koordinatenbeschreibung......................................19 2.2.2 Kartentypen..................................................20 2.3 Lokalisierung..................................................22 2.3.1 Positionierung...............................................23 2.3.2 Tracking.....................................................28 2.3.3 Koordinatentransformation....................................29 3 Zustandsschätzung dynamischer Systeme............................37 3.1 Probabilistischer Ansatz.......................................38 3.1.1 Satz von Bayes...............................................39 3.1.2 Markov-Kette.................................................40 3.1.3 Hidden Markov Model..........................................42 3.1.4 Dynamische Bayes‘sche Netze..................................43 3.2 Bayes-Filter...................................................45 3.2.1 Extended Kalman-Filter.......................................48 3.2.2 Histogramm-Filter............................................51 3.2.3 Partikel-Filter..............................................52 3.3 Markov Lokalisierung...........................................58 4 Simultane Lokalisierung und Kartenerstellung.....................61 4.1 Überblick......................................................62 4.1.1 Objektbeschreibung...........................................63 4.1.2 Umgebungskarte...............................................65 4.1.3 Schließen von Schleifen......................................70 4.2 Numerische Darstellung.........................................72 4.2.1 Formulierung als Bayes-Filter................................72 4.2.2 Diskretisierung des Zustandsraums............................74 4.2.3 Verwendung von Hypothesen....................................74 4.3 Initialisierung des Range-Only SLAM............................75 4.3.1 Verzögerte und unverzögerte Initialisierung..................75 4.3.2 Initialisierungsansätze......................................76 4.4 SLAM-Verfahren.................................................80 4.4.1 Extended Kalman-Filter-SLAM..................................81 4.4.2 Incremental Maximum Likelihood-SLAM..........................90 4.4.3 FastSLAM.....................................................99 5 Kooperative Kartenerstellung....................................107 5.1 Aufbereitung der Ankerkartierungsergebnisse...................108 5.2 Ankerkarten-Merging-Verfahren.................................110 5.2.1 Auflösen von Mehrdeutigkeiten...............................110 5.2.2 Erstellung einer gemeinsamen Ankerkarte.....................115 6 Herstellung eines absoluten Raumbezugs..........................117 6.1 Aufbereitung der Lokalisierungsergebnisse.....................117 6.1.1 Generierung von Geraden.....................................119 6.1.2 Generierung eines Graphen...................................122 6.2 Daten-Matching-Verfahren......................................123 6.2.1 Vektorbasierte Karteninformationen..........................125 6.2.2 Rasterbasierte Karteninformationen..........................129 7 Verfahrensevaluation............................................133 7.1 Methodischer Ansatz...........................................133 7.2 Datenbasis....................................................135 7.2.1 Sensordaten.................................................137 7.2.2 Digitales Kartenmaterial....................................143 7.3 Definition von Testszenarien..................................145 7.4 Bewertung.....................................................147 7.4.1 SLAM-Verfahren..............................................148 7.4.2 Ankerkarten-Merging-Verfahren...............................151 7.4.3 Daten-Matching-Verfahren....................................152 8 Zusammenfassung und Ausblick....................................163 8.1 Ergebnisse der Arbeit.........................................164 8.2 Ausblick......................................................165 Literaturverzeichnis..............................................166 A Ergänzungen zum entwickelten Verfahren..........................A-1 A.1 Generierung von Bewegungsinformationen........................A-1 A.2 Erweiterung des FastSLAM-Verfahrens...........................A-2 A.3 Ablauf des konzipierten Greedy-Algorithmus....................A-4 A.4 Lagewinkel der Kanten in einer Rastergrafik...................A-5 B Ergänzungen zur Verfahrensevaluation............................A-9 B.1 Geschwindigkeitsprofile der simulierten Objekttrajektorien....A-9 B.2 Gesamtes SLAM-Ergebnis eines Testszenarios....................A-9 B.3 Statistische Repräsentativität...............................A-10 B.4 Gesamtes Ankerkarten-Merging-Ergebnis eines Testszenarios....A-11 B.5 Gesamtes Daten-Matching-Ergebnis eines Testszenarios.........A-18 B.6 Qualitative Ergebnisbewertung................................A-18 B.7 Divergenz des Gesamtverfahrens...............................A-18
Buchteile zum Thema "Range-Only-SLAM (Simultaneous Localization and Mapping)"
Torres-González, Arturo, J. Ramiro Martínez-de Dios und Aníbal Ollero. „Range-Only Simultaneous Localization and Mapping for Aerial Robots“. In Encyclopedia of Robotics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_73-1.
Der volle Inhalt der QuelleGaber, Heba, Mohamed Marey, Safaa Amin und Mohamed F. Tolba. „Localization and Mapping for Indoor Navigation“. In Handbook of Research on Machine Learning Innovations and Trends, 136–60. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2229-4.ch007.
Der volle Inhalt der QuelleGaber, Heba, Mohamed Marey, Safaa Amin und Mohamed F. Tolba. „Localization and Mapping for Indoor Navigation“. In Robotic Systems, 930–54. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1754-3.ch046.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Range-Only-SLAM (Simultaneous Localization and Mapping)"
Lourenco, Pedro, Pedro Batista, Paulo Oliveira, Carlos Silvestre und C. L. Philip Chen. „Sensor-based globally asymptotically stable range-only simultaneous localization and mapping“. In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760786.
Der volle Inhalt der QuelleFabresse, F. R., F. Caballero, L. Merino und A. Ollero. „Active perception for 3D range-only simultaneous localization and mapping with UAVs“. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2016. http://dx.doi.org/10.1109/icuas.2016.7502639.
Der volle Inhalt der QuelleFabresse, F. R., F. Caballero und A. Ollero. „Decentralized simultaneous localization and mapping for multiple aerial vehicles using range-only sensors“. In 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015. http://dx.doi.org/10.1109/icra.2015.7140099.
Der volle Inhalt der QuellePutra, Irham Arfakhsadz, und Prawito Prajitno. „Parameter Tuning of G-mapping SLAM (Simultaneous Localization and Mapping) on Mobile Robot with Laser-Range Finder 360° Sensor“. In 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2019. http://dx.doi.org/10.1109/isriti48646.2019.9034573.
Der volle Inhalt der QuelleAtanasov, Nikolay, Sean L. Bowman, Kostas Daniilidis und George J. Pappas. „A Unifying View of Geometry, Semantics, and Data Association in SLAM“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/722.
Der volle Inhalt der QuelleAndersson, Lars A. A., und Marcus Berglund. „Camera Based Concept for Enhancement of IRB Accuracy Using Fixed Features and SLAM“. In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95312.
Der volle Inhalt der Quelle