Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Range of motion.

Zeitschriftenartikel zum Thema „Range of motion“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Range of motion" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kuramoto, Alice. „Passive Range of Motion“. Journal of Continuing Education in Nursing 29, Nr. 6 (November 1998): 283. http://dx.doi.org/10.3928/0022-0124-19981101-03.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Werner, Brian C., Chris M. Kuenze, Justin W. Griffin, Matthew L. Lyons, Joseph M. Hart und Stephen F. Brockmeier. „Shoulder Range of Motion“. Orthopaedic Journal of Sports Medicine 1, Nr. 4_suppl (Januar 2013): 2325967113S0010. http://dx.doi.org/10.1177/2325967113s00106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lea, R. D., und J. J. Gerhardt. „Range-of-motion measurements.“ Journal of Bone & Joint Surgery 77, Nr. 5 (Mai 1995): 784–98. http://dx.doi.org/10.2106/00004623-199505000-00017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bellamy, R. E. „Range-of-motion measurements.“ Journal of Bone & Joint Surgery 77, Nr. 12 (Dezember 1995): 1946. http://dx.doi.org/10.2106/00004623-199512000-00022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Leibovic, S. J. „Range-of-motion measurements.“ Journal of Bone & Joint Surgery 77, Nr. 12 (Dezember 1995): 1946–47. http://dx.doi.org/10.2106/00004623-199512000-00023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mayer, Tom G., George Kondraske, Susan Brady Beals und Robert J. Gatchel. „Spinal Range of Motion“. Spine 22, Nr. 17 (September 1997): 1976–84. http://dx.doi.org/10.1097/00007632-199709010-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Makkad, Satwinderpal S. „Range from motion blur“. Optical Engineering 32, Nr. 8 (1993): 1915. http://dx.doi.org/10.1117/12.143301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sánchez-Arce, Isidro de Jesús, Alan Walmsley, Muhammed Fahad und Emmanuel Santiago Durazo-Romero. „Lateral differences of the forearm range of motion“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, Nr. 5 (08.02.2020): 496–506. http://dx.doi.org/10.1177/0954411920904597.

Der volle Inhalt der Quelle
Annotation:
Malunion is a common complication of distal radius fracture and often causes a reduction in the range of motion. The measurement of the range of motion is a part of the process for evaluating the final motion after a malunion of a distal radius fracture is diagnosed. However, the amount of range of motion reduced due to the malunion often is calculated upon the assumption that the motion is equal in both forearms. Although this assumption has been questioned, not much work has been conducted which defines the difference in range of motion between the two forearms. In this work, a methodology has been proposed to measure the forearm range of motion using inertial measurement units. The motion was measured in both forearms of a control group. Afterwards, the motion was compared between both forearm sides; then, differences and relationships were drawn. Our results indicated that the forearm rotational motion is larger in the dominant forearm. Moreover, pronation and supination motions differ among the limbs, supination being always larger than pronation. In the dominant forearm, supination is much larger than pronation, while in the non-dominant their magnitudes are rather close. These results provide important data for a more accurate way to determine how the malunion of a fracture or another pathology affects the forearm motion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Prazdny, Kvetoslav. „Three-Dimensional Structure from Long-Range Apparent Motion“. Perception 15, Nr. 5 (Oktober 1986): 619–25. http://dx.doi.org/10.1068/p150619.

Der volle Inhalt der Quelle
Annotation:
Experiments are reported which show that three-dimensional structure can be perceived from two-dimensional image motions carried by objects defined solely by the differences in binocular and/or temporal correlation (ie disparity or motion discontinuities). This demonstrates that the kinetic depth effect is independent of motion detection in the luminance domain and that its relevant input comes from detectors based on some form of identity preservation of objects or features over time, ie the long-range processes of apparent motion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Maulucci, Ruth A., und Richard H. Eckhouse. „A Technique for Measuring Clothed Range of Joint Motion“. Journal of Applied Biomechanics 13, Nr. 3 (August 1997): 316–33. http://dx.doi.org/10.1123/jab.13.3.316.

Der volle Inhalt der Quelle
Annotation:
The study of range of joint motion is of theoretical and practical interest to basic research, workspace design, rehabilitation, and mathematical models. Nude range of motion has been extensively explored, whereas range of motion under clothed conditions, although equally important in applications, has received less attention. A project was designed to investigate modern instrumentation and methodologies for examining clothed range of joint motion. An empirical study was conducted using three distinct techniques simultaneously, involving 6 subjects, two military ensembles, and 46 planar motions. The results of the study showed one of the techniques, a computerized six-degree-of-freedom electromagnetic tracker, to be superior for joint motion applications under clothed conditions. Customized physical modifications and software were implemented to adapt the device for physiological applications, and algorithms were created for extracting joint motion information. Standardized procedures for performance strategies were defined. Recommendations were also given for the use of the other two techniques in applications having different requirements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Grossberg, Stephen, und Michael E. Rudd. „Cortical dynamics of visual motion perception: Short-range and long-range apparent motion.“ Psychological Review 99, Nr. 1 (1992): 78–121. http://dx.doi.org/10.1037/0033-295x.99.1.78.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

KOMIYAMA, Takuya, Hiroshi SAWANO, Hayato YOSHIOKA und Hidenori SHINNO. „B005 A Long-Range Straightness Measurement with Motion Error Compensation“. Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2013.7 (2013): 173–76. http://dx.doi.org/10.1299/jsmelem.2013.7.173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Messenger, Nicole, und Kelly Estes. „Shoulder Pain-- Range of Motion“. Medicine & Science in Sports & Exercise 51, Supplement (Juni 2019): 486. http://dx.doi.org/10.1249/01.mss.0000561962.13180.a8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Guscott, John K. „Constant range ultrasonic motion detector“. Journal of the Acoustical Society of America 82, Nr. 3 (September 1987): 1103. http://dx.doi.org/10.1121/1.395353.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

&NA;. „Lumbar Range-of-Motion Measurements“. Back Letter 9, Nr. 10 (1994): 113. http://dx.doi.org/10.1097/00130561-199409100-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kersey, Robert D. „Joint Range-of-Motion Assessment“. Athletic Therapy Today 10, Nr. 1 (Januar 2005): 42–43. http://dx.doi.org/10.1123/att.10.1.42.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Von Grünau, Michael W. „A motion aftereffect for long-range troboscopic apparent motion“. Perception & Psychophysics 40, Nr. 1 (Januar 1986): 31–38. http://dx.doi.org/10.3758/bf03207591.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Georgeson, Mark A., und Michael G. Harris. „The temporal range of motion sensing and motion perception“. Vision Research 30, Nr. 4 (Januar 1990): 615–19. http://dx.doi.org/10.1016/0042-6989(90)90072-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Mather, George, Patrick Cavanagh und Stuart M. Anstis. „A Moving Display Which Opposes Short-Range and Long-Range Signals“. Perception 14, Nr. 2 (April 1985): 163–66. http://dx.doi.org/10.1068/p140163.

Der volle Inhalt der Quelle
Annotation:
A novel display is described which stimulates both the long-range and the short-range motion detecting processes simultaneously, but with opposing directions of movement. The direction in which the stimulus appears to move depends on retinal eccentricity and element size, but adaptation to the display always produces a motion aftereffect (MAE) direction opposite to the direction of the short-range component. The display may offer insights into the properties of the two-process motion detecting system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Madson, Timothy J., James W. Youdas und Vera J. Suman. „Reproducibility of Lumbar Spine Range of Motion Measurements Using the Back Range of Motion Device“. Journal of Orthopaedic & Sports Physical Therapy 29, Nr. 8 (August 1999): 470–77. http://dx.doi.org/10.2519/jospt.1999.29.8.470.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bin Abd Razak, Hamid Rahmatullah, Xinyun Audrey Han, Hwei Chi Chong und Hwee Chye Andrew Tan. „Total Knee Arthroplasty in Asian Subjects: Preoperative Range of Motion Determines Postoperative Range of Motion?“ Orthopaedic Surgery 6, Nr. 1 (Februar 2014): 33–37. http://dx.doi.org/10.1111/os.12088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Marshall, Matthew M., Jacqueline Reynolds Mozrall und Jasper E. Shealy. „The Effects of Complex Wrist and Forearm Posture on Wrist Range of Motion“. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 41, Nr. 1 (Oktober 1997): 629–33. http://dx.doi.org/10.1177/1071181397041001138.

Der volle Inhalt der Quelle
Annotation:
In order to minimize the risk of repetitive trauma injuries, postures or motions that place joints near the limits of their range of motion (RoM) should be avoided. Before it can be determined that a posture or motion approaches the limit of a joint's motion, these limits need to be established. Previous research on wrist functionality has focused almost entirely on RoM in two or three isolated planes (flexion/extension, radial/ulnar deviation, and forearm pronation/supination), without investigating potential effects of complex wrist/forearm posture on RoM. Since most practical applications of this wrist motion data involve more than these isolated planar deviations, the effects of complex wrist/forearm posture on wrist functionality need to be understood.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ko, Yun-Ho, Hyun-Soo Kang und Si-Woong Lee. „Adaptive search range motion estimation using neighboring motion vector differences“. IEEE Transactions on Consumer Electronics 57, Nr. 2 (Mai 2011): 726–30. http://dx.doi.org/10.1109/tce.2011.5955214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Kim, Jung Man. „Restoration of Shoulder Range of Motion“. Clinics in Shoulder and Elbow 17, Nr. 3 (01.01.2014): 101. http://dx.doi.org/10.5397/cise.2014.17.3.101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kalscheur, Jean, Lynnda Emery und Patricia Costello. „Range of Motion in Older Women“. Physical & Occupational Therapy In Geriatrics 16, Nr. 1 (01.09.1999): 77–96. http://dx.doi.org/10.1300/j148v16n01_06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Kalscheur, Jean A., Lynnda J. Emery und Patricia S. Costello. „Range of Motion in Older Women“. Physical & Occupational Therapy In Geriatrics 16, Nr. 1-2 (Januar 1999): 77–96. http://dx.doi.org/10.1080/j148v16n01_06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wroblewski, B. M. „Range of Motion of the Hip“. Journal of Bone and Joint Surgery-American Volume 82, Nr. 11 (November 2000): 1671–72. http://dx.doi.org/10.2106/00004623-200011000-00028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

D'Lima, Darryl D., Andrew G. Urquhart, Knute O. Buehler, Richard H. Walker und Clifford W. Colwell. „Range of Motion of the Hip“. Journal of Bone and Joint Surgery-American Volume 82, Nr. 11 (November 2000): 1672. http://dx.doi.org/10.2106/00004623-200011000-00029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Djugash, Joseph, und Sanjiv Singh. „Motion-aided network SLAM with range“. International Journal of Robotics Research 31, Nr. 5 (April 2012): 604–25. http://dx.doi.org/10.1177/0278364912441039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Itoi, Eiji, Wataru Watanabe, Shin Yamada, Togo Shimizu und Ikuko Wakabayashi. „Range of Motion after Bankart Repair“. American Journal of Sports Medicine 29, Nr. 4 (Juli 2001): 441–45. http://dx.doi.org/10.1177/03635465010290041001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sankar, Wudbhav N., Christopher T. Laird und Keith D. Baldwin. „Hip Range of Motion in Children“. Journal of Pediatric Orthopaedics 32, Nr. 4 (Juni 2012): 399–405. http://dx.doi.org/10.1097/bpo.0b013e3182519683.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Joseph, Benjamin. „Hip Range of Motion in Children“. Journal of Pediatric Orthopaedics 34, Nr. 4 (Juni 2014): 481–82. http://dx.doi.org/10.1097/bpo.0b013e31829fff29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

&NA;. „Performing passive range-of-motion exercises“. Nursing 36, Nr. 3 (März 2006): 50–51. http://dx.doi.org/10.1097/00152193-200603000-00040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Knight, Kathryn. „DINOSAUR RANGE OF MOTION STUDIES VINDICATED“. Journal of Experimental Biology 215, Nr. 12 (23.05.2012): i.2—ii. http://dx.doi.org/10.1242/jeb.074815.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Gaffare, Mayra Garduño, Bertrand Vachon und Armando Segovia de los Ríos. „Range image generator including robot motion“. Robotica 24, Nr. 1 (31.10.2005): 113–23. http://dx.doi.org/10.1017/s0263574704001547.

Der volle Inhalt der Quelle
Annotation:
The system here described has the capability of generating range images that include robot motion. The system has two main modules, the motion and the image generator. Motion is modeled using a Bezier's curve method. To compute a range value corresponding to a pixel image, the robot position in the coordinated system is obtained from trajec-tory generation. In this way, distortion is produced in the image, or sequence of images, as a consequence of motion. The obtained range images represent scenes perceived by the robot from a specific location or during a specified dis-placement in a very “real” view.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Breger-lee, Donna, Elizabeth Tomancik Voelker, David Giurintano, Andrew Novick und Lillian Browder. „Reliability of Torque Range of Motion“. Journal of Hand Therapy 6, Nr. 1 (Januar 1993): 29–34. http://dx.doi.org/10.1016/s0894-1130(12)80178-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Arbogast, K. B., M. R. Maltese, M. F. Tomasello, P. A. Gholve, J. E. Friedman und J. P. Dormans. „Pediatric cervical spine range of motion“. Journal of Biomechanics 39 (Januar 2006): S151. http://dx.doi.org/10.1016/s0021-9290(06)83510-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

TAUB, ETHAN, JONATHAN D. VICTOR und MARY M. CONTE. „Nonlinear Preprocessing in Short-range Motion“. Vision Research 37, Nr. 11 (Juni 1997): 1459–77. http://dx.doi.org/10.1016/s0042-6989(96)00305-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Johansen, Mette, Helle Haslund-Thomsen, Jeanette Kristensen und Søren Thorgaard Skou. „Photo-Based Range-of-Motion Measurement“. Pediatric Physical Therapy 32, Nr. 2 (April 2020): 151–60. http://dx.doi.org/10.1097/pep.0000000000000689.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Tanré, Etienne, und Pierre Vallois. „Range of Brownian Motion with Drift“. Journal of Theoretical Probability 19, Nr. 1 (Januar 2006): 45–69. http://dx.doi.org/10.1007/s10959-006-0012-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Chambers, D. J., C. G. Millar und N. A. S. Taylor. „Specificity in joint range of motion“. Journal of Biomechanics 25, Nr. 7 (Juli 1992): 815. http://dx.doi.org/10.1016/0021-9290(92)90592-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Prieto, Sandra L., Juan C. Mazza, Raúl R. Festa und Patricia Cosolito. „Range Of Motion In Lower Limbs“. Medicine & Science in Sports & Exercise 49, Nr. 5S (Mai 2017): 577. http://dx.doi.org/10.1249/01.mss.0000518504.47781.74.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Stone, Jennifer A. „Rehabilitation–Static/Dynamic Range of Motion“. Athletic Therapy Today 3, Nr. 2 (März 1998): 11–12. http://dx.doi.org/10.1123/att.3.2.11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Merrick, Mark A. „Ultrasound and Range of Motion Examined“. Athletic Therapy Today 5, Nr. 3 (Mai 2000): 48–49. http://dx.doi.org/10.1123/att.5.3.48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Gadomski, Stephen J., Nicholas A. Ratamess und Paul T. Cutrufello. „Range of Motion Adaptations in Powerlifters“. Journal of Strength and Conditioning Research 32, Nr. 11 (November 2018): 3020–28. http://dx.doi.org/10.1519/jsc.0000000000002824.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gajdosik, Richard L., und Richard W. Bohannon. „Clinical Measurement of Range of Motion“. Physical Therapy 67, Nr. 12 (01.12.1987): 1867–72. http://dx.doi.org/10.1093/ptj/67.12.1867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Drinkwater, Eric J., Norman R. Moore und Stephen P. Bird. „Effects of Changing from Full Range of Motion to Partial Range of Motion on Squat Kinetics“. Journal of Strength and Conditioning Research 26, Nr. 4 (April 2012): 890–96. http://dx.doi.org/10.1519/jsc.0b013e318248ad2e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Sofyan, Ahmad, und Nurul Aktifah. „Gambaran Peningkatan Lingkup Gerak Sendi Setelah Pemberian Range Of Motion Pada Pasien Stroke : Literature Review“. Prosiding Seminar Nasional Kesehatan 1 (21.01.2022): 2380–87. http://dx.doi.org/10.48144/prosiding.v1i.1074.

Der volle Inhalt der Quelle
Annotation:
AbstrackStroke is a brain functional disorder that occurs suddenly with clinical signs and symptoms both focal and global that lasts more than 024 hours the event will cause permanent damage to the brain. In stroke patients, the role of physiotherapists is to restore the functional range of motion of the joints, one of which is by administering Range Of Motion (ROM) which aims to increase the range of motion of the joints. The purpose of this study is to describe the description of the increase in the range of motion of the joints after the provision of range of motion (ROM) in stroke patients. Methods: The selection of articles in this study used the PICO mnemonic. Writing articles using a literature review search from the Garuda/Scholer Portal and NCBI). The results of a literature review review of 5 articles showed that there was an increase in joint range of motion in stroke patients with an average of 60.322 before intervention and 66.42 after intervention. . Range of motion is able to increase the range of motion of joints in stroke patients. Suggestion: It is hoped that it will provide input in alternative methods of physiotherapists in providing Range of motion in order to increase the range of joint motion in stroke patients.Keywords: Range Of Motion, Scope of joint motion; stroke AbstrakStroke merupakan suatu0gangguan0fungsional0otak yang terjadi secara mendadak dengan tanda dan0gejala klinik baik fokal maupun global yang berlangsung0lebih dari024 jam kejadian tersebut akan menimbulkan kerusakan permanen pada otak. Pasien stroke Peran fisioterapis untuk mengembalikan fungsional lingkup gerak sendi salah satunya dengan melakukan pemberian Range Of Motion (ROM) yang bertujuan untuk meningkatkan lingkup gerak sendi. Tujuan penelitian ini yaitu mendeskripsikan Gambaran Peningkatan Lingkup gerak sendi Setelah Pemberian Range Of Motion (ROM) Pada Pasien Stroke .Pemilihan artikel pada penelitian ini menggunakan mnemonic PICO. Penulisan artikel menggunakan penelusuran literature review dari Portal Garuda/Scholer dan NCBI).Hasil literature review review 5 artikel menunjukkan bahwa Adanya peningkatan kemampuan lingkup gerak sendi pada pasien stroke dengan rata – rata sebelum intervensi sebesar 60,322 dan sesudah intervensi sebesar 66,42 Range of motion mampu untuk meningkatkan lingkup gerak sendi pada pasien stroke. Penelitian ini menerangkan tentang metode alternative fisioterapis dalam pemberian Range of motion guna meningkatkan lingkup gerak sendi pada pasien stroke.Kata Kunci: Range Of Mottion, Lingkup gerak sendi ; Stroke
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Hibberd, Elizabeth E., Sakiko Oyama, Justin Tatman und Joseph B. Myers. „Dominant-Limb Range-of-Motion and Humeral-Retrotorsion Adaptation in Collegiate Baseball and Softball Position Players“. Journal of Athletic Training 49, Nr. 4 (01.08.2014): 507–13. http://dx.doi.org/10.4085/1062-6050-49.3.23.

Der volle Inhalt der Quelle
Annotation:
Context: Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. Objective: To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Design: Cross-sectional study. Setting: Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Patients or Other Participants: Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Intervention(s): Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Main Outcome Measure(s): Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Results: Baseball players had greater glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Conclusions: Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the athletes adapt to the demands of the sport differently; thus, stretching/strengthening programs designed for baseball may not be the most effective programs for softball athletes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Cavanagh, Patrick. „Short-range vs Long-range motion: Not a valid distinction“. Spatial Vision 5, Nr. 4 (1991): 303–9. http://dx.doi.org/10.1163/156856891x00065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie