Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Random spreading“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Random spreading" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Random spreading"
Xu, Feng, und Oliver E. Jensen. „Drop spreading with random viscosity“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, Nr. 2194 (Oktober 2016): 20160270. http://dx.doi.org/10.1098/rspa.2016.0270.
Der volle Inhalt der QuelleGalam, S. „Minority opinion spreading in random geometry“. European Physical Journal B 25, Nr. 4 (Februar 2002): 403–6. http://dx.doi.org/10.1140/epjb/e20020045.
Der volle Inhalt der QuelleVojta, Thomas, und Michael Schreiber. „Damage spreading in random field systems“. Computer Physics Communications 121-122 (September 1999): 750. http://dx.doi.org/10.1016/s0010-4655(06)70153-9.
Der volle Inhalt der QuelleGiorno, Virginia, und Serena Spina. „Rumor spreading models with random denials“. Physica A: Statistical Mechanics and its Applications 461 (November 2016): 569–76. http://dx.doi.org/10.1016/j.physa.2016.06.070.
Der volle Inhalt der QuellePanagiotou, K., und L. Speidel. „Asynchronous Rumor Spreading on Random Graphs“. Algorithmica 78, Nr. 3 (01.08.2016): 968–89. http://dx.doi.org/10.1007/s00453-016-0188-x.
Der volle Inhalt der QuelleVojta, Thomas. „Damage spreading in random field systems“. Journal of Physics A: Mathematical and General 30, Nr. 18 (21.09.1997): L643—L649. http://dx.doi.org/10.1088/0305-4470/30/18/006.
Der volle Inhalt der QuelleChang, Ching-Lueh, und Yuh-Dauh Lyuu. „Spreading of Messages in Random Graphs“. Theory of Computing Systems 48, Nr. 2 (09.03.2010): 389–401. http://dx.doi.org/10.1007/s00224-010-9258-7.
Der volle Inhalt der QuelleClementi, Andrea, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud, Francesco Pasquale und Riccardo Silvestri. „Rumor spreading in random evolving graphs“. Random Structures & Algorithms 48, Nr. 2 (30.03.2015): 290–312. http://dx.doi.org/10.1002/rsa.20586.
Der volle Inhalt der QuelleVerdu, S., und S. Shamai. „Spectral efficiency of CDMA with random spreading“. IEEE Transactions on Information Theory 45, Nr. 2 (März 1999): 622–40. http://dx.doi.org/10.1109/18.749007.
Der volle Inhalt der QuelleChiang, P. H., D. B. Lin und H. J. Li. „SINR for DS-CDMA with random spreading“. IEE Proceedings - Communications 153, Nr. 3 (2006): 419. http://dx.doi.org/10.1049/ip-com:20045235.
Der volle Inhalt der QuelleDissertationen zum Thema "Random spreading"
Laptyeva, Tetyana V. „Nonlinear waves in random lattices: localization and spreading“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-107881.
Der volle Inhalt der QuelleErtug, Ozgur. „Generalized Random Spreading Performance Analysis Of Cdma Over Gwssus Fading Channels“. Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12607022/index.pdf.
Der volle Inhalt der Quellei.e. RAKE, zero-forcing decorrelator, linear minimum mean-squared error (LMMSE) multiuser receivers, within a single-cell setting over generalized time-varying GWSSUS - Rayleigh/Ricean - fading channels via random matrix theoretic tools. Assuming maximal-ratio combining (MRC) of resolved frequency - multipath - diversity channels due to wideband transmission, the signal-to-interference ratios (SIRs) with multichannel multiuser receivers that set the basis for further derivations are statistically characterized. The information-theoretic ergodic and outage sum-rates spectral efficiencies are then derived and analyzed.
Pettarin, Alberto. „Graph Models of Information Spreading in Wireless Networks“. Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422448.
Der volle Inhalt der QuelleQuesta tesi studia le proprieta' strutturali di alcuni modelli a grafo di reti di agenti autonomi che comunicano via radio per completare un prefissato compito. Reti ad hoc, di sensori e veicolari sono forse gli esempi piu' immediati. Lo scopo di questa tesi e caratterizzare la diffusione dell’infor- mazione in questi modelli a grafo di reti wireless, considerata l’importanza di questo processo come primitiva fondamentale per realizzare protocolli piu' complessi. Gli approcci basati su tecniche combinatorie adottati per l’analisi di sistemi distribuiti “classici”, come le reti P2P o i cluster di calcolo, non possono essere estesi alle reti wireless, per varie ragioni: ad esempio a causa dei vincoli fisici che governano il funzionamento di questi sistemi (interferenza sul canale radio, scarse risorse energetiche/computazionali, ecc.) e per il fatto che la topologia della rete puo' essere ignota in fase di progettazione o puo' evolvere nel tempo. Questa tesi suggerisce come sia possibile affrontare tali problemi tramite l’opportuna definizione e l’analisi rigorosa di modelli a grafo (o processi su grafi) che catturino l’evoluzione e il funzionamento delle reti wireless. Mostriamo come sia possibile applicare quest’approccio a due scenari di riferimento. Innanzitutto studiamo una famiglia di grafi random nota come Bluetooth Topology, che ben rappresenta la connettivita' della rete creata dalla fase di device discovery in protocolli simili al Bluetooth, largamente utilizzati nelle reti wireless. Dal punto di vista formale, la Bluetooth Topology generalizza il ben noto modello Random Geometric Graph, introducendovi una selezione distribuita degli archi. Studiamo l’espansione e il diametro di questi grafi, poiche' quantificano la banda e la latenza della rete. Dimostriamo limiti stretti all’espansione e, sfruttando questa caratterizzazione, diamo dei limiti quasi stretti al diametro. I nostri risultati provano che la Bluetooth Topology presenta lo stesso livello globale di connettivita' del Random Geometric Graph, pur richiedendo molti meno link di comunicazione. Graph, pur richiedendo molti meno link di comunicazione. Motivati dal recente crescente interesse verso i sistemi mobili, nella seconda parte della tesi concentriamo la nostra attenzione sulle dinamiche di disseminazione dell’informazione tra agenti che effettuano random walk su una griglia planare e che comunicano su brevi distanze. Questo scenario puo' essere utilizzato per studiare fenomeni come la diffusione di malattie, dove le infezioni sono il risultato di interazioni locali tra gli agenti. Proviamo che, per un sistema sufficientemente sparso, il tempo di broadcast di un messaggio e indipendente dal raggio di trasmissione, dimostrando che esso e' dominato dal tempo necessario affinche' molti agenti si incontrino. I nostri risultati completano l’analisi, apparsa in lavori precedenti, di sistemi densi, dove viceversa vi e' dipendenza del tempo di broadcast dal raggio di trasmissione. Inoltre le nostre tecniche di analisi possono essere estese a modelli di mobilita'-comunicazione simili, suggerendo alcune interessanti linee di ulteriore ricerca.
Maier, Benjamin F. „Spreading Processes in Human Systems“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/20950.
Der volle Inhalt der QuelleHuman systems have been modeled and analyzed on the basis of complex networks theory in recent time. This abstraction allows for thorough quantitative analyses to investigate which structural and temporal features of a system influence the evolution of spreading processes, such as the passage of information or of infectious diseases. The first part of this work investigates how the ubiquitous modular hierarchical structure of static real-world networks allows for fast delivery of messages. New heuristics are developed to evaluate random walk mean first passage times and cover times on locally clustered networks. A comparison to average medium approximations shows that the emergence of these minima are pure network phenomena. It is further found that not all modular hierarchical network models provide optimal message delivery structure. In the second part, temporally varying face-to-face contact networks are investigated for their susceptibility to infection. Several studies have shown that people tend to spend time in small, densely-connected groups or in isolation, and that their connection behavior follows a circadian rhythm. To what extent both of these features influence the spread of diseases is as yet unclear. Therefore, a new temporal network model is devised here. Based on this model, circadially varying networks can for the first time be interpreted as following trajectories through a newly defined systemic state space. It is further revealed that in many temporally varying networks the system becomes less susceptible to infection when the time-scale of the disease approaches the time-scale of the network variation. This is in direct conflict with findings of other studies that predict increasing susceptibility of temporal networks, a discrepancy which is attributed to the invalidity of a widely applied approximation. The results presented here imply that new theoretical advances are necessary to study the spread of diseases in temporally varying networks.
Treloar, Katrina K. „Mathematical models for collective cell spreading“. Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/86960/1/Katrina_Treloar_Thesis.pdf.
Der volle Inhalt der QuelleLaptyeva, Tetyana V. [Verfasser], Roderich [Akademischer Betreuer] Moessner und Arcady [Akademischer Betreuer] Pikovsky. „Nonlinear waves in random lattices: localization and spreading / Tetyana V. Laptyeva. Gutachter: Roderich Moessner ; Arcady Pikovsky. Betreuer: Roderich Moessner“. Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://d-nb.info/1068151722/34.
Der volle Inhalt der QuelleVo, Brenda. „Novel likelihood-free Bayesian parameter estimation methods for stochastic models of collective cell spreading“. Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/99588/1/Brenda_Vo_Thesis.pdf.
Der volle Inhalt der QuelleTaghavianfar, Mohsen. „An Investigation on Network Entropy-Gossiping Protocol and Anti-entropy Evaluation“. Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2684.
Der volle Inhalt der QuelleGossiping Protocols, are inherently random in behavior.Nonetheless, they are not structure-less. Their asymptotic behavior when implemented in large scales is the matter of focus in this thesis.
Tel: +46709700505 Address: Pinnharvsgatan 3 E lgh 1202 43147 Mölndal Sweden
Rehman, Abdul. „Practical watermarking for multimedia traitor tracing“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0450.
Der volle Inhalt der QuelleThe popularity of mobile phones, digital cameras, and personal computers has changed multimedia content creation, consumption, and sharing. This raises the issues of endless duplication, unauthorized uploading, and unlawful redistribution. In this era of widespread digital information distribution, it is more important than ever to develop dependable and strong solutions to avoid illegal distribution. A multimedia fingerprinting scheme is an efficient means of protecting multimedia content and preventing illegal distribution. The goal of this thesis is to find individuals who were engaged in the production and illegal distribution of multimedia content. We proposed a Discrete Wavelet Transform blind video watermarking scheme tied with probabilistic fingerprinting codes to counter collusion attacks among higher-resolution videos. The robust and blind watermarking leads to a higher bit error rate, we need to add extra redundancy to fingerprinting codes to obtain greater tracing rates. For that, we propose a coding scheme, in which the random spreading is utilized with error-correcting codes. We utilized FFMpeg to embed the watermark image into the video, as well as to conduct a range of collusion attacks (e.g., average, darken, and lighten) on high-resolution video and compared the most often suggested fingerprinting code generator-decoders in the literature to find the colluder. The experimental investigation shows that our design has high performance in terms of colluder tracing, and time
Laptyeva, Tetyana V. „Nonlinear waves in random lattices: localization and spreading“. Doctoral thesis, 2012. https://tud.qucosa.de/id/qucosa%3A26725.
Der volle Inhalt der QuelleBücher zum Thema "Random spreading"
Reimer, Jacob. 100 Days Of Kindness: Spreading Happiness, Joy, and Love with 100 Acts of Random Kindness! Watchtower Publishing, 2014.
Den vollen Inhalt der Quelle findenThurner, Stefan, Peter Klimek und Rudolf Hanel. Introduction to the Theory of Complex Systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821939.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Random spreading"
Panagiotou, Konstantinos, und Leo Speidel. „Asynchronous Rumor Spreading on Random Graphs“. In Algorithms and Computation, 424–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45030-3_40.
Der volle Inhalt der QuelleClementi, Andrea, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud, Marco Isopi, Alessandro Panconesi, Francesco Pasquale und Riccardo Silvestri. „Rumor Spreading in Random Evolving Graphs“. In Lecture Notes in Computer Science, 325–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40450-4_28.
Der volle Inhalt der QuelleZimeras, Stelios. „Spreading Disease Modeling Using Markov Random Fields“. In The Springer Series on Demographic Methods and Population Analysis, 155–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93005-9_10.
Der volle Inhalt der QuelleFountoulakis, Nikolaos, und Konstantinos Panagiotou. „Rumor Spreading on Random Regular Graphs and Expanders“. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 560–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15369-3_42.
Der volle Inhalt der QuelleResseguier, Valentin, Yicun Zhen und Bertrand Chapron. „Constrained Random Diffeomorphisms for Data Assimilation“. In Mathematics of Planet Earth, 281–92. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_13.
Der volle Inhalt der QuelleSabetghadam, Serwah, Mihai Lupu und Andreas Rauber. „Which One to Choose: Random Walks or Spreading Activation?“ In Lecture Notes in Computer Science, 112–19. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12979-2_11.
Der volle Inhalt der QuelleQin, Bo, und Cunlai Pu. „Identifying Sources of Random Walk-Based Epidemic Spreading in Networks“. In Machine Learning and Intelligent Communications, 375–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32388-2_32.
Der volle Inhalt der QuelleAubry, Serge. „Diffusion Without Spreading of a Wave Packet in Nonlinear Random Models“. In Chaos, Fractals and Complexity, 3–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37404-3_1.
Der volle Inhalt der QuelleDodds, Peter Sheridan. „A Simple Person’s Approach to Understanding the Contagion Condition for Spreading Processes on Generalized Random Networks“. In Computational Social Sciences, 27–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77332-2_2.
Der volle Inhalt der QuelleIannuzzi, Davide. „Random thoughts worth spreading“. In Entrepreneurship for Physicists A practical guide to move inventions from university to market. IOP Publishing, 2017. http://dx.doi.org/10.1088/978-1-6817-4668-5ch7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Random spreading"
Rosine, Germanicus, und El-Hassani Othman. „Machine Learning for Predicting DataCube Atomic Force Microscope (AFM)—MultiDAT-AFM“. In ISTFA 2024, 351–57. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0351.
Der volle Inhalt der QuelleBechini, Alessio, Adriano Donato De Matteis, Francesco Marcelloni und Armando Segatori. „Spreading fuzzy random forests with MapReduce“. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. http://dx.doi.org/10.1109/smc.2016.7844638.
Der volle Inhalt der QuellePenso, Lucia Draque. „Session details: Information spreading, random walks“. In PODC '12: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2012. http://dx.doi.org/10.1145/3245049.
Der volle Inhalt der QuelleFulghum, T. L., und G. E. Bottomley. „Matched filter bounds for low spreading factor DS-CDMA with random spreading sequences“. In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484). IEEE, 2003. http://dx.doi.org/10.1109/vetecf.2003.1285151.
Der volle Inhalt der QuelleHao, Yaohui, Hongbo Liu, Jiajia Sun und Liwei Gao. „Spreading Dynamics of Random Walks in Complex Networks“. In ICIT 2020: IoT and Smart City. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3446999.3447026.
Der volle Inhalt der QuelleSu, Yiwei, Jianping Zheng, Zijie Liang und Jie Ni. „Massive MIMO Enabled Unsourced Random Access Through LDPC Coding and Random Spreading“. In 2022 IEEE 22nd International Conference on Communication Technology (ICCT). IEEE, 2022. http://dx.doi.org/10.1109/icct56141.2022.10073330.
Der volle Inhalt der QuelleLiang, Zijie, Yiwei Su, Huiying Song, Kazuhiko Fukawa und Yuyuan Chang. „A Slotted Polar Random Spreading Scheme for Massive MIMO Unsourced Random Access“. In 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall). IEEE, 2023. http://dx.doi.org/10.1109/vtc2023-fall60731.2023.10333807.
Der volle Inhalt der QuelleHuang, Xiangyang, LiGuo Huang, Shudong Zhang, Lijuan Zhou, Minhua Wu und Mingrui Chen. „Improving Random Test Sets Using a Locally Spreading Approach“. In 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). IEEE, 2017. http://dx.doi.org/10.1109/qrs.2017.13.
Der volle Inhalt der QuellePreciado, Victor M., und Ali Jadbabaie. „Spectral analysis of virus spreading in random geometric networks“. In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400615.
Der volle Inhalt der QuellePradhan, Asit Kumar, Vamsi K. Amalladinne, Krishna R. Narayanan und Jean-Francois Chamberland. „Polar Coding and Random Spreading for Unsourced Multiple Access“. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC). IEEE, 2020. http://dx.doi.org/10.1109/icc40277.2020.9148687.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Random spreading"
Wilson, D., Matthew Kamrath, Caitlin Haedrich, Daniel Breton und Carl Hart. Urban noise distributions and the influence of geometric spreading on skewness. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42483.
Der volle Inhalt der Quelle