Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ramo-Shockley Theorem“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ramo-Shockley Theorem" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ramo-Shockley Theorem"
Liu, Pei, Chun Liu und Zhenli Xu. „Generalized Shockley–Ramo theorem in electrolytes“. Communications in Mathematical Sciences 15, Nr. 2 (2017): 555–64. http://dx.doi.org/10.4310/cms.2017.v15.n2.a11.
Der volle Inhalt der QuelleKim, Hunsuk, H. S. Min, T. W. Tang und Y. J. Park. „An extended proof of the Ramo-Shockley theorem“. Solid-State Electronics 34, Nr. 11 (November 1991): 1251–53. http://dx.doi.org/10.1016/0038-1101(91)90065-7.
Der volle Inhalt der QuelleALBAREDA, G., F. L. TRAVERSA, A. BENALI und X. ORIOLS. „COMPUTATION OF QUANTUM ELECTRICAL CURRENTS THROUGH THE RAMO–SHOCKLEY–PELLEGRINI THEOREM WITH TRAJECTORIES“. Fluctuation and Noise Letters 11, Nr. 03 (September 2012): 1242008. http://dx.doi.org/10.1142/s0219477512420084.
Der volle Inhalt der QuelleLi, Dion, David Chernin und Y. Y. Lau. „A Relativistic and Electromagnetic Correction to the Ramo–Shockley Theorem“. IEEE Transactions on Plasma Science 49, Nr. 9 (September 2021): 2661–69. http://dx.doi.org/10.1109/tps.2021.3099512.
Der volle Inhalt der QuelleDmitriev, S. G. „Derivation of Relationships of Currents in External Circuit and Parameters of Sampl“. Радиотехника и электроника 68, Nr. 5 (01.05.2023): 482–86. http://dx.doi.org/10.31857/s0033849423050042.
Der volle Inhalt der QuelleEisenberg, Bob, und Wolfgang Nonner. „Shockley-Ramo theorem measures conformation changes of ion channels and proteins“. Journal of Computational Electronics 6, Nr. 1-3 (18.01.2007): 363–65. http://dx.doi.org/10.1007/s10825-006-0130-6.
Der volle Inhalt der QuelleBENALI, A., F. L. TRAVERSA, G. ALBAREDA, A. ALARCÓN, M. AGHOUTANE und X. ORIOLS. „EFFECT OF GATE-ALL-AROUND TRANSISTOR GEOMETRY ON THE HIGH-FREQUENCY NOISE: ANALYTICAL DISCUSSION“. Fluctuation and Noise Letters 11, Nr. 03 (September 2012): 1241002. http://dx.doi.org/10.1142/s0219477512410027.
Der volle Inhalt der QuelleYoder, P. D., K. Gärtner und W. Fichtner. „A generalized Ramo–Shockley theorem for classical to quantum transport at arbitrary frequencies“. Journal of Applied Physics 79, Nr. 4 (15.02.1996): 1951–54. http://dx.doi.org/10.1063/1.361074.
Der volle Inhalt der QuelleLo Giudice, A., P. Oliveira, F. Fizzotti, Claudio Manfredotti, E. Vittone, Stefano Bianco, Giuseppe Bertuccio, R. Casiraghi und M. Jaksic. „Study of Ion Induced Damage in 4H-SiC“. Materials Science Forum 483-485 (Mai 2005): 389–92. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.389.
Der volle Inhalt der QuelleRiegler, W. „An application of extensions of the Ramo–Shockley theorem to signals in silicon sensors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 940 (Oktober 2019): 453–61. http://dx.doi.org/10.1016/j.nima.2019.06.056.
Der volle Inhalt der QuelleDissertationen zum Thema "Ramo-Shockley Theorem"
Dupin, Elsa. „Cοnceptiοn et mοdélisatiοn de cοllectrοns innοvants pοur la mesure de la cοmpοsante rapide des flux de neutrοns en réacteur“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC251.
Der volle Inhalt der QuelleSelective on-line measurement of fast neutron flux in a water-pool type reactor environment remains a challenge for in-core measurements. Self-powered neutron or gamma detectors (SPDs) are detectors used for on-line monitoring of thermal neutron and/or gamma ray fluxes. Operating without high voltage, their use is suitable for high flux levels and thus for in-core measurements. SPDs are mainly coaxial and consist of three main components: an emitter, an insulator and a sheath. Provided a wise choice of these three materials, the SPD could focus on interactions with particles of interest (neutrons or gamma). To meet the need for on-line fast neutron measurements in material testing reactors (MTR), this thesis aims to develop a new Self-Powered Neutron Detector (SPND) selective to fast neutrons flux. The design of such a detector with significant fast neutron contribution to the signal means reducing thermal neutron and gamma contributions to a minimum level in radiation environments where fast neutrons are the least flux. Prototype development and reactor tests of this new selective self-powered neutron detector are the main objectives of this PhD thesis work. Despite several publications in literature, some theoretical aspects of signal generation in SPDs remain incomplete, especially when it comes to small contributions. Also within the framework of this PhD thesis, and with the aim of a better understanding of SPNDs operation, all mechanisms affecting the current generation are studied by means of an electron beam experiment, helping for a better understanding of the behavior for insulation part of the sensor. Solving continuity equation systems and applying the Shockley-Ramo theorem to the SPD case is also part of this study. A complete understanding of the SPD signal generation is required in the development of new detectors.The main effort in designing a SPND sensitive and selective to fast neutrons lies in the choice of materials. In fact, thermal neutron cross-sections for common materials are much larger than fast neutron cross-sections. In reactor environment, gamma rays are also present in significant proportions. Gamma ray interactions with detector materials can also produce a significant signal compared to fast neutron interactions. Consequently, the SPND materials must maximize the fast neutron contribution. Fast neutron interactions have to be predominant in the emitter to induce a sufficiently large signal for measurement, meanwhile insulator and sheath materials shall produce a very limited signal. The estimation of the SPND current contributions is possible by means of numerical modelling and calculations. This led to the definition of a prototype of a fast neutron selective SPND. Prototypes of this innovative detector have been manufactured and tested at the Slovenian TRIGA Mark II research reactor (Jožef Stefan Institute), providing a proof of concept for the proposed specific emitter material
Buchteile zum Thema "Ramo-Shockley Theorem"
Kolanoski, Hermann, und Norbert Wermes. „Signal formation by moving charges“. In Particle Detectors, 127–56. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198858362.003.0005.
Der volle Inhalt der QuelleALBAREDA, G., F. L. TRAVERSA, A. BENALI und X. ORIOLS. „COMPUTATION OF QUANTUM ELECTRICAL CURRENTS THROUGH THE RAMO–SHOCKLEY–PELLEGRINI THEOREM WITH TRAJECTORIES“. In The Random and Fluctuating World, 101–11. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811252143_0013.
Der volle Inhalt der QuelleTerranova, Francesco. „Measurements in particle physics“. In A Modern Primer in Particle and Nuclear Physics, 58–98. Oxford University PressOxford, 2021. http://dx.doi.org/10.1093/oso/9780192845245.003.0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ramo-Shockley Theorem"
Li, D., D. Chernin und Y. Y. Lau. „Revisiting Ramo-Shockley Theorem“. In 2023 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2023. http://dx.doi.org/10.1109/icops45740.2023.10481237.
Der volle Inhalt der QuelleYu, Nak Won, Jong Min Kim, Young Chul Kim und Hyunchul Nah. „Novel Harmonic Distortion Analysis Method Using Ramo-Shockley Theorem“. In 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2023. http://dx.doi.org/10.1109/edtm55494.2023.10102968.
Der volle Inhalt der QuelleLi, Dion, Y. Y. Lau und D. Chernin. „Electromagnetic and Relativistic Corrections to the Ramo-Shockley Theorem“. In 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588418.
Der volle Inhalt der QuelleDmitriev, Sergey. „The Number of Independent Current Components in Shockley-Ramo Theorem“. In 2022 IEEE 8th All-Russian Microwave Conference (RMC). IEEE, 2022. http://dx.doi.org/10.1109/rmc55984.2022.10079527.
Der volle Inhalt der QuellePugal, Deivid, Alvo Aabloo, Kwang J. Kim und Youngsoo Jung. „Modeling IPMC Material With Dynamic Surface Characteristics“. In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1377.
Der volle Inhalt der Quelle