Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Raman coherence“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Raman coherence" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Raman coherence"
LEE, G. J., K. HARA, M. KATSURAGAWA und K. HAKUTA. „NONLINEAR FREQUENCY CONVERSION BY RAMAN COHERENCE PREPARED IN SOLID HYDROGEN FILM“. Journal of Nonlinear Optical Physics & Materials 13, Nr. 03n04 (Dezember 2004): 433–37. http://dx.doi.org/10.1142/s0218863504002092.
Der volle Inhalt der QuelleZhao, Yang, Sheng Zhang, Boyang Zhou, Rongwei Fan, Deying Chen, Zhonghua Zhang und Yuanqin Xia. „Molecular vibrational dynamics in PMMA studied by femtosecond CARS“. Modern Physics Letters B 28, Nr. 28 (10.11.2014): 1450222. http://dx.doi.org/10.1142/s0217984914502224.
Der volle Inhalt der QuelleKohles, N., P. Aechtner und A. Laubereau. „The “coherence peak” in time-resolved coherent Raman scattering“. Optics Communications 65, Nr. 5 (März 1988): 391–96. http://dx.doi.org/10.1016/0030-4018(88)90110-1.
Der volle Inhalt der QuelleFazio, Barbara, und Alessia Irrera. „Coherence of Raman light arises from disorder“. Bullettin of the Gioenia Academy of Natural Sciences of Catania 52, Nr. 382 (24.12.2019): MISC1—MISC3. http://dx.doi.org/10.35352/gioenia.v52i382.75.
Der volle Inhalt der QuellePestov, Dmitry, Gombojav O. Ariunbold, Xi Wang, Robert K. Murawski, Vladimir A. Sautenkov, Alexei V. Sokolov und Marlan O. Scully. „Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement“. Optics Letters 32, Nr. 12 (06.06.2007): 1725. http://dx.doi.org/10.1364/ol.32.001725.
Der volle Inhalt der QuelleWalker, D. R., D. D. Yavuz, M. Y. Shverdin, G. Y. Yin, A. V. Sokolov und S. E. Harris. „Raman self-focusing at maximum coherence“. Optics Letters 27, Nr. 23 (01.12.2002): 2094. http://dx.doi.org/10.1364/ol.27.002094.
Der volle Inhalt der QuelleChe, Junling, Wenqi Xu, Hui Wang, Yuhang Gao, Li Wang, Huayan Lan, Zhaoying Wei und Ming-Liang Hu. „Controlling Raman gain with atomic coherence“. Infrared Physics & Technology 127 (Dezember 2022): 104449. http://dx.doi.org/10.1016/j.infrared.2022.104449.
Der volle Inhalt der QuellePalinginis, Phedon, und Hailin Wang. „Coherent Raman scattering from electron spin coherence in GaAs quantum wells“. Journal of Magnetism and Magnetic Materials 272-276 (Mai 2004): 1919–20. http://dx.doi.org/10.1016/j.jmmm.2003.12.1186.
Der volle Inhalt der QuelleKou, Jun, Ren-Gang Wan, Zhi-Hui Kang, Xiao-Jun Zhang, Hai-Hua Wang, Yun Jiang und Jin-Yue Gao. „Measurement of coherence dynamics based on coherent anti-Stokes Raman scattering“. Optics Communications 282, Nr. 23 (Dezember 2009): 4573–76. http://dx.doi.org/10.1016/j.optcom.2009.08.049.
Der volle Inhalt der QuelleGazizov, Almaz R., Myakzyum Kh Salakhov und Sergey S. Kharintsev. „Tip-enhanced Stokes and anti-Stokes Raman scattering in defect-enriched carbon films“. Journal of Physics: Conference Series 2015, Nr. 1 (01.11.2021): 012044. http://dx.doi.org/10.1088/1742-6596/2015/1/012044.
Der volle Inhalt der QuelleDissertationen zum Thema "Raman coherence"
Egodage, Kokila Dampali [Verfasser], Jürgen [Gutachter] Popp und Volker [Gutachter] Deckert. „Combination of optical coherence tomography and Raman spectroscopy / Kokila Dampali Egodage ; Gutachter: Jürgen Popp, Volker Deckert“. Jena : Friedrich-Schiller-Universität Jena, 2018. http://d-nb.info/1170587712/34.
Der volle Inhalt der QuelleStone, N. „Raman spectroscopy of biological tissue for application in optical diagnosis of malignancy“. Thesis, Department of Environmental and Ordnance Systems, 2009. http://hdl.handle.net/1826/4015.
Der volle Inhalt der QuelleStone, Nicholas. „Raman spectroscopy of biological tissue for application in optical diagnosis of malignancy“. Thesis, Cranfield University, 2001. http://dspace.lib.cranfield.ac.uk/handle/1826/4015.
Der volle Inhalt der QuelleBalagopal, Bavishna. „Advanced methods for enhanced sensing in biomedical Raman spectroscopy“. Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6343.
Der volle Inhalt der QuelleIgnacchiti, Jim. „Contrôle et caractérisation de la cohérence Raman induite par bruit quantique dans des fibres creuses remplies de gaz“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0056.
Der volle Inhalt der QuelleThis thesis addresses the design, implementation, and use of an experimental and numerical simulation platform aimed at exciting and amplifying Raman coherence in a controlled manner from quantum noise. The long term objective is to explore stimulated Raman scattering in hollow-core fiber as a means to generate coherent optical frequency combs with a multi-octave spectral width, thus creating a tool for generating arbitrary optical wave functions, such as attosecond pulses, or mode-locked lasers. The principle is based on the excitation of a gas contained in a hollow-core photonic crystal fiber (HCPCF) by ultrashort laser pulses, in such a way that only one of the coherent and independent spatiotemporal modes of the spontaneous Stokes radiation is excited and amplified. This innovative approach ensures phase modulation of the excitation laser field at very high frequencies without phase noise. It differs from existing techniques, such as molecular modulation, by eliminating the need for a second laser. However, this method requires a single-mode optical guide and exceptionally high Raman gain. In this context, this work focuses then on the generation and measurement of the intra and inter-pulse coherence of the Raman comb to evaluate its potential for the aforementioned applications. To this end, a theoretical model of stimulated Raman scattering in the impulsive regime was developed, highlighting the interest of the transient regime, which amplifies the Stokes field in a single temporal mode. Numerical simulations then detailed the dynamics of the Stokes field through the Raman medium, taking into account factors such as laser depletion. Furthermore, a specific hybrid hollow-core optical fiber was developed, offering low linear losses (a few dB/km at 1030 nm) and exceptional single-mode guidance (MPI up to −47 dB), thus ensuring the spatial coherence of the Raman comb. Two experimental setups were then realized to examine the comb’s coherence, starting with the intra-pulse aspect. An infrared laser adjustable in pulse duration, energy, and repetition rate was coupled into the hydrogen-filled fiber to generate the comb, then analyzed at the output with a Mach-Zehnder interferometer with high temporal resolution (∼ fs) and wide dynamic range (approximately 50 ps). The results showed that working in the range of 3 − 10 ps and 1 − 10 µJ minimizes parasitic effects such as the Kerr effect, and the mutual coherence is close to unity for all first-order Stokes and anti-Stokes lines, as confirmed by numerical calculations. The study of inter-pulse coherence revealed a complex behavior for pulses spaced less than 1 ns apart and a decrease in coherence corresponding to the coherence relaxation time (∼ 2 ns) for longer delays between pulses. These results highlight the importance of controlling the energy and delay of pulses to maintain high coherence and suggest that excitation lasers with repetition rates around 400 MHz or more can generate mode-locked lasers based on our approach. In conclusion, the advances made during this thesis on the coherence properties of frequency combs demonstrate the potential of stimulated Raman scattering in HCPCFs for optical wave synthesis and pave the way for other applications such as frequency conversion for quantum optics, optical trapping, and molecular cooling
Perrot, Jean-Luc. „Explorations optiques multimodales et multiéchelles non invasives appliquées au revêtement cutanéomuqueux , étendues à l'appareil oculaire antérieur“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSES010/document.
Der volle Inhalt der QuelleAfter a brief introduction to the history of non-invasive dermatological imaging, this work is divided into 3 parts. 1) Presentation of a project for the development of a low-cost miniaturized optical coherence tomograph to allow dissemination of this technique to dermatologists practicing outside hospitals. This is an ANR project: DOCT-VCSEL Portable Optical Coherence Tomography with MEMS-VCSEL swept-sources for skin analysis ANR 2015 / Societal Challenge "Life, Health and Welfare" Axis 13 “Technologies for Health" 2) Presentation of a project whose goal is the identification of cancer skin lesions by means of a new high definition OCT developed by the company DAMAE, resulting from the Higher Institute of Optics of Palaiseau. It is a device that will initially be reserved for centers of excellence in dermatological imaging. 3) Presentation of 52 publications related to skin imaging, in which I participated, and referenced in the international databases as of December 31, 2016. This work covers all modern dermatological non-invasive imaging and addresses Subjects that had never been studied in this way. Notably the mucous membranes and the anterior ocular apparatus but also the identification by confocal microscopy of the surgical margins or the association confocal microscopy Raman spectrometry
Smith, Brett. „Coherent Anti-Stokes Raman Scattering Miniaturized Microscope“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24281.
Der volle Inhalt der QuelleKavanagh, Thomas Christopher. „Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy“. Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/hyperspectral-coherent-antistokes-raman-scattering-microscopy(14952c6f-e333-4596-950f-29be55cbca44).html.
Der volle Inhalt der QuelleViranna, Narendra Balaguru. „Coherent anti-Stokes Raman spectroscopy of diamond“. Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/26229.
Der volle Inhalt der QuelleBeaman, R. A. „Two beam coherent spectroscopy“. Thesis, Cardiff University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379609.
Der volle Inhalt der QuelleBücher zum Thema "Raman coherence"
Series, G. W. Laser spectroscopy and other topics: Selected papers of G.W. Series, Raman professor, 1982-83. Bangalore: Indian Academy of Sciences, 1985.
Den vollen Inhalt der Quelle findenMarowsky, Gerd, und Valery V. Smirnov, Hrsg. Coherent Raman Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77194-1.
Der volle Inhalt der QuelleCheng, Ji-Xin, und Xiaoliang Sunney Xie. Coherent Raman scattering microscopy. Boca Raton: CRC Press, 2013.
Den vollen Inhalt der Quelle findenMarowsky, Gerd. Coherent Raman Spectroscopy: Recent Advances. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Den vollen Inhalt der Quelle findenInternational, Symposium on Coherent Raman Spectroscopy (1990 Samarkand Uzbekistan). Coherent Raman spectroscopy: Recent advances : proceedings of the International Symposium on Coherent Raman Spectroscopy, Samarkand, USSR, September 18-20, 1990. Berlin: Springer-Verlag, 1992.
Den vollen Inhalt der Quelle findenHiroyuki, Matsui, Kawamura Yoshiro und United States. National Aeronautics and Space Administration., Hrsg. Measurement of detonation temperature of hydrogen-oxygen mixture by CARS (Coherent Anti-Stokes Raman Spectroscopy). Washington, DC: National Aeronautics and Space Administration, 1988.
Den vollen Inhalt der Quelle findenM, Castellucci Emilio, Righini Roberto und Foggi Paolo, Hrsg. Coherent Raman spectroscopy: Applications and new development : XI European CARS Workshop, March 23-25, 1992, Florence, Italy. Singapore: World Scientific, 1993.
Den vollen Inhalt der Quelle findenEesley, G. L. Coherent Raman Spectroscopy. Elsevier Science & Technology Books, 2013.
Den vollen Inhalt der Quelle findenSmirnov, Valery V. Coherent Raman Spectroscopy. Island Press, 1992.
Den vollen Inhalt der Quelle findenCheng, Ji-Xin, und Xiaoliang Sunney Xie. Coherent Raman Scattering Microscopy. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Raman coherence"
Dixit, Sham, Mark Hermann und Tom Karr. „High Intensity Effects in Raman Scattering“. In Coherence and Quantum Optics VI, 227–36. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_43.
Der volle Inhalt der QuelleKuo, S. J., und M. G. Raymer. „Spatial Quantum Fluctuations in Stimulated Raman Scattering“. In Coherence and Quantum Optics VI, 627–30. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_115.
Der volle Inhalt der QuelleRaymer, M. G., Z. W. Li und I. A. Walmsley. „Temporal Quantum Fluctuations in Stimulated Raman Scattering“. In Coherence and Quantum Optics VI, 977–80. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_177.
Der volle Inhalt der QuelleHemmer, P. R., M. S. Shahriar, D. P. Katz, P. Kumar, J. Donoghue und M. Cronin-Golomb. „Optical Phase Conjugation in the Double Raman System“. In Coherence and Quantum Optics VII, 435–36. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_91.
Der volle Inhalt der QuellePospíchal, Milan, und Jan Peřina. „Quantum Theory of Light Propagation in Raman Scattering“. In Coherence and Quantum Optics VII, 447–48. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_97.
Der volle Inhalt der QuelleSwanson, R. C., D. C. MacPherson und J. L. Carlsten. „Quantum Fluctuations in the Stimulated Raman Scattering Spectrum“. In Coherence and Quantum Optics VI, 1125–29. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_203.
Der volle Inhalt der QuelleRosenberger, A. T. „Amplitude and Phase Dynamics of Superradiant and Raman Pulse Trains“. In Coherence and Quantum Optics VI, 1019–21. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_184.
Der volle Inhalt der QuelleGauthier, Daniel J., und Michael D. Stenner. „Pulse propagation in a high-gain bichromatically-driven Raman amplifier“. In Coherence and Quantum Optics VIII, 619–20. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_197.
Der volle Inhalt der QuelleLu, Weiping, R. G. Harrison und P. K. Gupta. „Nonlinear Dynamics of Raman Lasers in the Good and Bad Cavity Limit“. In Coherence and Quantum Optics VI, 721–25. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_132.
Der volle Inhalt der QuelleSmith, D. D., A. Oien, G. T. Bennett und T. Monarski. „Spectral and Spatial Coherence in Solid State Raman Lasers“. In Frontiers of Laser Physics and Quantum Optics, 375–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-07313-1_28.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Raman coherence"
Littleton, Brad, Simon Ameer-Beg, Frederic Festy, David Richards, P. M. Champion und L. D. Ziegler. „Interferometric Coherent Raman Micro-Spectroscopy with a Low Coherence Supercontinuum Source“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482632.
Der volle Inhalt der QuelleMalinovsky, Vladimir S., P. M. Champion und L. D. Ziegler. „Adiabatic Optimal Control of CARS Coherence“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482438.
Der volle Inhalt der QuelleRobles, Francisco E., Kevin C. Zhou, Martin C. Fischer und Warren S. Warren. „Stimulated Raman scattering (SRS) spectroscopic OCT (Conference Presentation)“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI, herausgegeben von Joseph A. Izatt, James G. Fujimoto und Valery V. Tuchin. SPIE, 2017. http://dx.doi.org/10.1117/12.2254829.
Der volle Inhalt der QuelleSun, Yuhan, Karunakaran Venugopal, Abdelkrim Benabbas, Arthur McClelland, Paul Champion, P. M. Champion und L. D. Ziegler. „Vibrational Coherence Spectroscopy Investigation of Cytochrome c Unfolding“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482636.
Der volle Inhalt der QuelleSugawara, Shuto, Shun Fujii, Shota Sota und Takasumi Tanabe. „Stability and mutual coherence measurement of a Raman microcomb in a silica WGM microresonator“. In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fw4j.3.
Der volle Inhalt der QuelleTahara, Tahei, P. M. Champion und L. D. Ziegler. „Vibrational Spectroscopy Using Short Optical Pulses: Coherence, Transients and Interfaces“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482459.
Der volle Inhalt der QuelleSentosa, Ryan, Clara Stiebing, Matthias Eibel, Matthias Salas, Wim de Jong, Izabella Jolan-Jahn, Michael Schmitt et al. „Multimodal optical coherence tomography, Raman spectroscopy and IR fundus imaging for in vivo retinal imaging“. In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/oct.2022.cs3e.6.
Der volle Inhalt der QuelleMüller, M., Klaas Wynne und J. D. W. van Voorst. „High time resolution and coherence effects with incoherent light in the Raman Fringe Decay“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.wc3.
Der volle Inhalt der QuelleHayashi, M., und Y. Fujimura. „Origin of ultrafast dynamics in time-resolved impulsive stimulated Raman scattering (ISRS) from molecules in liquids.“ In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.tud3.
Der volle Inhalt der QuelleChathanathil, Jabir, Gengyuan Liu und Svetlana Malinovskaya. „Remote detection using maximal coherence control technique in coherent anti-Stokes Raman spectroscopy“. In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.lm3b.5.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Raman coherence"
Shore, B. W., R. Sacks und T. Karr. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III. Office of Scientific and Technical Information (OSTI), Februar 1987. http://dx.doi.org/10.2172/6460116.
Der volle Inhalt der QuelleSunney Xie, Wei Min, Chris Freudiger, Sijia Lu. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1033507.
Der volle Inhalt der QuelleSiwecki, S., und L. Dosser. Investigation of a simulated tritium plasma using Coherent Anti-Stokes Raman Spectroscopy. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5198897.
Der volle Inhalt der QuelleMorgen, Michael Mark. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/501549.
Der volle Inhalt der QuellePalmer, R. E. The CARSFT computer code calculating coherent anti-Stokes Raman spectra: User and programmer information. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/6399189.
Der volle Inhalt der QuelleSingh, J. P., und Fang-Yu Yueh. Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10189541.
Der volle Inhalt der QuelleLucht, Robert. Polarization Spectroscopy And Electronic- Resonance-Enhanced Coherent Anti-stokes Raman Scattering For Quantitative Concentration Measurements. Office of Scientific and Technical Information (OSTI), Mai 2003. http://dx.doi.org/10.2172/1854342.
Der volle Inhalt der QuelleLucht, Robert P. (DURIP 09) Ultrafast Laser System for Coherent Anti-Stokes Raman Scattering Measurements at Data Rates of 5 kHz. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada564372.
Der volle Inhalt der QuelleYaney, Perry P., und John W. Parish. Studies of Surface Deactivation of Vibrationally-Excited Homonuclear Molecules in Gaseous Discharge Media Using Coherent Anti-Stokes Raman Spectroscopy (CARS). Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada369109.
Der volle Inhalt der Quelle