Auswahl der wissenschaftlichen Literatur zum Thema „Raman coherence“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Raman coherence" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Raman coherence"

1

LEE, G. J., K. HARA, M. KATSURAGAWA und K. HAKUTA. „NONLINEAR FREQUENCY CONVERSION BY RAMAN COHERENCE PREPARED IN SOLID HYDROGEN FILM“. Journal of Nonlinear Optical Physics & Materials 13, Nr. 03n04 (Dezember 2004): 433–37. http://dx.doi.org/10.1142/s0218863504002092.

Der volle Inhalt der Quelle
Annotation:
We investigated the Raman coherence characteristics in the solid hydrogen film deposited on a sapphire substrate. By using Raman coherence prepared with two single-frequency pulsed lasers, we generated the multiorder coherent Raman sidebands in solid hydrogen film. High-order Raman sidebands were obtained under strong pumping conditions (≥230 MW/cm2). The generated anti-Stokes(AS)–Raman sidebands extended from ultraviolet (292 nm for AS5 band) to visible (565 nm for AS1 band) region. The multiorder Raman sideband generation is thought to be due to the parametric coupling of pump and coupling lasers. The frequency conversion efficiency shows the maximum (14%) at the pumping intensity of 360 MW/cm2. From the experiment that makes the multimode probe beam beat with the prepared Raman coherence, we found that the prepared Raman coherence replicates the probe beam to its Raman sidebands.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhao, Yang, Sheng Zhang, Boyang Zhou, Rongwei Fan, Deying Chen, Zhonghua Zhang und Yuanqin Xia. „Molecular vibrational dynamics in PMMA studied by femtosecond CARS“. Modern Physics Letters B 28, Nr. 28 (10.11.2014): 1450222. http://dx.doi.org/10.1142/s0217984914502224.

Der volle Inhalt der Quelle
Annotation:
The ultrafast molecular vibrational dynamics in PMMA sheets is studied by femtosecond time-resolved coherent anti-Stokes Raman spectroscopy at room temperature. The C – H stretch modes at 2870 cm-1 and 3008 cm-1 in PMMA sheets are excited and detected. The coherence relaxation times and beat wavenumbers of the Raman modes are obtained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kohles, N., P. Aechtner und A. Laubereau. „The “coherence peak” in time-resolved coherent Raman scattering“. Optics Communications 65, Nr. 5 (März 1988): 391–96. http://dx.doi.org/10.1016/0030-4018(88)90110-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fazio, Barbara, und Alessia Irrera. „Coherence of Raman light arises from disorder“. Bullettin of the Gioenia Academy of Natural Sciences of Catania 52, Nr. 382 (24.12.2019): MISC1—MISC3. http://dx.doi.org/10.35352/gioenia.v52i382.75.

Der volle Inhalt der Quelle
Annotation:
Light propagation in random materials is a topic of great interest for the scientific community, not only for the possible relevant applications in the fields of photonics and renewable energies but even more since it allows to unveil new fascinating phenomena related to wave physics. Among these physical events, the most robust and always surviving any ensemble average is the coherent backscattering of light (CBS). It is a very subtle interference effect in disordered scattering media (such as semiconductor powders or micro-particle suspensions like milk or fog), in which wave coherence is preserved even after a very large number of random scattering events, eventually manifesting as a maximum of interference in the exact backscattering direction. CBS is related to the well-defined wave character and to the preservation of the optical information, for this reason it has been so far experimentally observed and theoretically studied only for elastic scattering, while the occurrence of inelastic scattering is known to reduce the degree of coherence in the diffusion process, affecting the visibility of the effect. Fazio et al. (2017) have demonstrated that this experimental evidence surprisingly survives also for the inelastic light scattering, such as the spontaneous Raman process, as long as the optical information of the propagating wave is retained. In this kind of inelastic scattering events, light loses a small part of its energy by slightly changing wavelength. Its phase coherence, however, is preserved for a very short time, thus making interference between Raman scattered waves still possible. The observed maximum of interference in the exact backscattering direction is therefore a signature of the coherent nature of individual Raman scattering processes. To date, indications on the coherence properties of Raman scattering have been reported only by looking at the nanoscopic scale, through complex near-field experiments making use of very sharp tips or through ultra-fast time resolved techniques. This time, however, we did not rely on complex experiments or advanced techniques. Conversely, the combination of an accurate experimental procedure and the unique structural properties of a silicon-based material were the only simple ingredients for the observation of a new unexpected physical phenomenon. In particular, a dense forest of ultrathin silicon wires arranged in a disordered fashion, where light waves bounce back and forth countless times before coming out, was the medium that allowed us to reveal this new effect, which opens the way for new and important discoveries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pestov, Dmitry, Gombojav O. Ariunbold, Xi Wang, Robert K. Murawski, Vladimir A. Sautenkov, Alexei V. Sokolov und Marlan O. Scully. „Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement“. Optics Letters 32, Nr. 12 (06.06.2007): 1725. http://dx.doi.org/10.1364/ol.32.001725.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Walker, D. R., D. D. Yavuz, M. Y. Shverdin, G. Y. Yin, A. V. Sokolov und S. E. Harris. „Raman self-focusing at maximum coherence“. Optics Letters 27, Nr. 23 (01.12.2002): 2094. http://dx.doi.org/10.1364/ol.27.002094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Che, Junling, Wenqi Xu, Hui Wang, Yuhang Gao, Li Wang, Huayan Lan, Zhaoying Wei und Ming-Liang Hu. „Controlling Raman gain with atomic coherence“. Infrared Physics & Technology 127 (Dezember 2022): 104449. http://dx.doi.org/10.1016/j.infrared.2022.104449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Palinginis, Phedon, und Hailin Wang. „Coherent Raman scattering from electron spin coherence in GaAs quantum wells“. Journal of Magnetism and Magnetic Materials 272-276 (Mai 2004): 1919–20. http://dx.doi.org/10.1016/j.jmmm.2003.12.1186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kou, Jun, Ren-Gang Wan, Zhi-Hui Kang, Xiao-Jun Zhang, Hai-Hua Wang, Yun Jiang und Jin-Yue Gao. „Measurement of coherence dynamics based on coherent anti-Stokes Raman scattering“. Optics Communications 282, Nr. 23 (Dezember 2009): 4573–76. http://dx.doi.org/10.1016/j.optcom.2009.08.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gazizov, Almaz R., Myakzyum Kh Salakhov und Sergey S. Kharintsev. „Tip-enhanced Stokes and anti-Stokes Raman scattering in defect-enriched carbon films“. Journal of Physics: Conference Series 2015, Nr. 1 (01.11.2021): 012044. http://dx.doi.org/10.1088/1742-6596/2015/1/012044.

Der volle Inhalt der Quelle
Annotation:
Abstract Anti-Stokes Raman scattering is one of the mechanisms that lie behind an optical refrigeration due to release of photons with greater energy than of incoming photons. To achieve a cooling regime the enhancement of anti-Stokes scattering is necessary, since spontaneous Stokes scattering dominates over anti-Stokes scattering under normal conditions. Here, we investigate the opportunity of enhancement of spontaneous anti-Stokes Raman scattering in defect-enriched carbon film by means of localized plasmon resonances. In our simulations, incoherence of Raman scattering results in excess of anti-Stokes intensity over Stokes one. However, when the field is localized within the phonon coherence volume (coherent regime), the anti-Stokes intensity is lower compared to Stokes one. The provided analysis shows that plasmon-enhanced anti-Stokes Raman scattering can be achieved in highly-defective carbon films. The results are beneficial for Raman-based temperature measurements on the nanoscale.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Raman coherence"

1

Egodage, Kokila Dampali [Verfasser], Jürgen [Gutachter] Popp und Volker [Gutachter] Deckert. „Combination of optical coherence tomography and Raman spectroscopy / Kokila Dampali Egodage ; Gutachter: Jürgen Popp, Volker Deckert“. Jena : Friedrich-Schiller-Universität Jena, 2018. http://d-nb.info/1170587712/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stone, N. „Raman spectroscopy of biological tissue for application in optical diagnosis of malignancy“. Thesis, Department of Environmental and Ordnance Systems, 2009. http://hdl.handle.net/1826/4015.

Der volle Inhalt der Quelle
Annotation:
The utilisation of near-infraredR aman spectroscopyfo r the discrimination of cancersa nd pre-cancers from normal tissue in the acro-digestive tract has been evaluated. A commercially available Raman microspectrometehr as been modified to provide optimum throughput, sensitivity and fluorescence suppression for epithelial tissue measurements. Laser excitation at 830nmw as demonstratedto be optimum. High quality (SN ratio 15-20) NIR-Raman spectrah ave been acquired from oesophageaal nd laryngeal tissues in time scales under 30 seconds. Pathological groupings covering the full range of normal and neoplastic tissues in the organs of interest have been studied. Both fresh (snap frozen) and formalin fixed tissue samples were investigated,f irstly to indicate whether tissue-typesc an be distinguishedi n vivo and secondlyt o demonstrateth e use of Raman spectroscopya s a tool for classificationi n the pathology lab. Results using multivariate statistical techniques to distinguish between spectra from specimens exhibiting different tissue pathologies have been extremely promising. Crossvalidation of the spectral predictive models has shown that three groups of larynx tissue can be separated with sensitivities and specificities of between 86 and 90% and 87 and 95% respectively. Oesophageal prediction models have demonstrated sensitivities and specificities of 84 to 97% and 93 to 98% respectively for a three-group consensus model and 73 to 100% and 92 to 100% for an eight-groupc onsensusm odel. Epithelial tissues including stomach, tonsil, endometrium, bladder and prostate have been studiedt o identify further tissuesw hereR amans pectroscopym ay be employedf or detection of disease.S pectraw ere similar to those obtainedf rom oesophagusa nd larynx, although sufficiently different for distinct discriminant models to be required. This work has demonstratedth e genericn atureo f Ramans pectroscopyfo r the detectiona nd classification of cancersa nd pre-cancerousle sionsi n many tissues.T he evidencep rovided by this study indicatest hat utilisation of Ramans pectroscopyfo r non-invasived etectiona nd classification of diseaseis a distinct possibility. Potentiald ifficulties in the transferabilityf rom in vitro to in vivo have been evaluated and no significant barriers have been observed. However, further in vivo probe development and optimisation will be required before 'optical biopsy' with Ramans pectroscopyc anb ecomea reality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stone, Nicholas. „Raman spectroscopy of biological tissue for application in optical diagnosis of malignancy“. Thesis, Cranfield University, 2001. http://dspace.lib.cranfield.ac.uk/handle/1826/4015.

Der volle Inhalt der Quelle
Annotation:
The utilisation of near-infrared Raman spectroscopy for the discrimination of cancers and pre-cancers from normal tissue in the acro-digestive tract has been evaluated. A commercially available Raman microspectrometer has been modified to provide optimum throughput, sensitivity and fluorescence suppression for epithelial tissue measurements. Laser excitation at 830nm was demonstrated to be optimum. High quality (SN ratio 15-20) NIR-Raman spectra have been acquired from oesophageal and laryngeal tissues in time scales under 30 seconds. Pathological groupings covering the full range of normal and neoplastic tissues in the organs of interest have been studied. Both fresh (snap frozen) and formalin fixed tissue samples were investigated, firstly to indicate whether tissue-types can be distinguished in vivo and secondly to demonstrate the use of Raman spectroscopy as a tool for classification in the pathology lab. Results using multivariate statistical techniques to distinguish between spectra from specimens exhibiting different tissue pathologies have been extremely promising. Cross-validation of the spectral predictive models has shown that three groups of larynx tissue can be separated with sensitivities and specificities of between 86 and 90% and 87 and 95% respectively. Oesophageal prediction models have demonstrated sensitivities and specificities of 84 to 97% and 93 to 98% respectively for a three-group consensus model and 73 to 100% and 92 to 100% for an eight-group consensus model. Epithelial tissues including stomach, tonsil, endometrium, bladder and prostate have been studied to identify further tissues where Raman spectroscopy may be employed for detection of disease. Spectra were similar to those obtained from oesophagus and larynx, although sufficiently different for distinct discriminant models to be required. This work has demonstrated the generic nature of Raman spectroscopy for the detection and classification of cancers and pre-cancerous lesions in many tissues. The evidence provided by this study indicates that utilisation of Raman spectroscopy for non-invasive detection and classification of disease is a distinct possibility. Potential difficulties in the transferability from in vitro to in vivo have been evaluated and no significant barriers have been observed. However, further in vivo probe development and optimisation will be required before 'optical biopsy' with Raman spectroscopy can become a reality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Balagopal, Bavishna. „Advanced methods for enhanced sensing in biomedical Raman spectroscopy“. Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6343.

Der volle Inhalt der Quelle
Annotation:
Raman spectroscopy is a powerful tool in the field of biomedicine for disease diagnosis owing to its potential to provide the molecular fingerprint of biological samples. However due to the inherent weak nature of the Raman process, there is a constant quest for enhancing the sensitivity of this technique for enhanced diagnostic efficiency. This thesis focuses on achieving this goal by integrating advanced methods with Raman spectroscopy. Firstly this thesis explores the applicability of a laser based fluorescence suppression technique – Wavelength Modulated Raman Spectroscopy (WMRS) - for suppressing the broad luminescence background which often obscure the Raman peaks. The WMRS technique was optimized for its applications in single cell studies and tissue studies for enhanced sensing without compromising the throughput. It has been demonstrated that the optimized parameter would help to chemically profile single cell within 6 s. A two fold enhancement in SNR of Raman bands was demonstrated when WMRS was implemented in fiber Raman based systems for tissue analysis. The suitability of WMRS on highly sensitive single molecule detection techniques such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Resonance Raman Spectroscopy (SERRS) was also explored. Further this optimized technique was successfully used to address an important biological problem in the field of immunology. This involved label-free identification of major immune cell subsets from human blood. Later part of this thesis explores a multimodal approach where Raman spectroscopy was combined with Optical Coherence Tomography (OCT) for enhanced diagnostic sensitivity (>10%). This approach was used to successfully discriminate between ex-vivo adenocarcinoma tissues and normal colon tissues. Finally this thesis explores the design and implementation of a specialized fiber Raman probe that is compatible with surgical environments. This probe was originally developed to be compatible with Magnetic Resonance Imaging (MRI) environment. It has the potential to be used for performing minimally invasive optical biopsy during interventional MRI procedures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ignacchiti, Jim. „Contrôle et caractérisation de la cohérence Raman induite par bruit quantique dans des fibres creuses remplies de gaz“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0056.

Der volle Inhalt der Quelle
Annotation:
Ces travaux de thèse portent sur la conception, la mise en œuvre et l’utilisation d’une plateforme expérimentale et de simulations numériques visant à exciter et amplifier la cohérence Raman de façon contrôlée à partir du bruit quantique. L’objectif est d’explorer la diffusion Raman stimulée dans des fibres creuses comme un moyen de générer des peignes de fréquences optiques cohérents, avec une largeur spectrale multiple-octaves, et ainsi créer un outil pour produire des fonctions d’ondes optiques arbitraires, telles que des impulsions attosecondes ou des lasers à modes verrouillés. Le principe repose sur l’excitation d’un gaz contenu dans une fibre à cristal photonique à cœur creux (HCPCF) par des impulsions laser ultrabrèves de telle sorte qu’un seul des modes spatio-temporels cohérents et indépendants de l’émission spontanée de la radiation Stokes soit excité et amplifié. Cette approche novatrice assure une modulation de phase du champ du laser d’excitation à des fréquences très élevées et sans bruit de phase. Elle se distingue des techniques existantes, telles que la modulation moléculaire, par l’absence de besoin d’un deuxième laser. Cependant, cette méthode nécessite un guide optique unimodal et un gain Raman exceptionnellement élevé. Dans ce contexte, ces travaux se sont ainsi focalisés sur la génération et la mesure de la cohérence intra et inter-impulsionnelle du peigne Raman afin d’évaluer son potentiel pour les applications mentionnées précédemment. Pour ce faire, un modèle théorique de la diffusion Raman stimulée en régime impulsionnel a été développé, soulignant l’intérêt du régime transitoire, qui amplifie le champ Stokes en un seul mode temporel. Des simulations numériques ont ensuite détaillé la dynamique du champ Stokes à travers le milieu Raman, en prenant en compte des facteurs tels que la déplétion du laser. Par ailleurs, une fibre optique à cœur creux hybride a été spécifiquement développée, offrant de faibles pertes linéiques (quelques dB/km à 1030 nm) et un guidage unimodal exceptionnel (MPI jusqu’à −47 dB), assurant ainsi la cohérence spatiale du peigne Raman. Deux bancs expérimentaux ont ensuite été réalisés pour examiner la cohérence du peigne, en commençant par l’aspect intra-impulsionnel. Un laser infrarouge réglable en durée d’impulsion, en énergie et en taux de répétition a été couplé dans la fibre remplie de dihydrogène pour générer le peigne, puis analysé à la sortie avec un interféromètre Mach-Zehnder à haute résolution temporelle (∼ fs) et large plage dynamique (environ 50 ps). Les résultats ont montré qu’en travaillant dans la gamme 3 − 10 ps et 1 − 10 µJ, les effets parasites, comme l’effet Kerr, sont minimisés, et la cohérence mutuelle est proche de l’unité pour toutes les raies de Stokes et anti-Stokes du 1er ordre, comme confirmé par les calculs numériques. L’étude de la cohérence inter-impulsionnelle a révélé un comportement complexe pour des impulsions espacées de moins de 1 ns et une diminution de la cohérence suivant la valeur du temps de relaxation de la cohérence (∼ 2 ns) pour des délais plus longs entre les impulsions. Ces résultats soulignent l’importance de contrôler l’énergie et le délai des impulsions pour maintenir une haute cohérence, et suggèrent que des lasers d’excitation à des cadences de l’ordre de 400 MHz ou plus peuvent générer des lasers à modes verrouillés basés sur notre approche. En conclusion, les avancées réalisées durant cette thèse sur les propriétés de cohérence des peignes de fréquence montrent le potentiel de la diffusion Raman stimulée dans les HCPCFs pour la synthèse d’ondes optiques, et ouvrent la voie à d’autres applications comme la conversion de fréquence pour l’optique quantique, le piégeage optique et le refroidissement moléculaire
This thesis addresses the design, implementation, and use of an experimental and numerical simulation platform aimed at exciting and amplifying Raman coherence in a controlled manner from quantum noise. The long term objective is to explore stimulated Raman scattering in hollow-core fiber as a means to generate coherent optical frequency combs with a multi-octave spectral width, thus creating a tool for generating arbitrary optical wave functions, such as attosecond pulses, or mode-locked lasers. The principle is based on the excitation of a gas contained in a hollow-core photonic crystal fiber (HCPCF) by ultrashort laser pulses, in such a way that only one of the coherent and independent spatiotemporal modes of the spontaneous Stokes radiation is excited and amplified. This innovative approach ensures phase modulation of the excitation laser field at very high frequencies without phase noise. It differs from existing techniques, such as molecular modulation, by eliminating the need for a second laser. However, this method requires a single-mode optical guide and exceptionally high Raman gain. In this context, this work focuses then on the generation and measurement of the intra and inter-pulse coherence of the Raman comb to evaluate its potential for the aforementioned applications. To this end, a theoretical model of stimulated Raman scattering in the impulsive regime was developed, highlighting the interest of the transient regime, which amplifies the Stokes field in a single temporal mode. Numerical simulations then detailed the dynamics of the Stokes field through the Raman medium, taking into account factors such as laser depletion. Furthermore, a specific hybrid hollow-core optical fiber was developed, offering low linear losses (a few dB/km at 1030 nm) and exceptional single-mode guidance (MPI up to −47 dB), thus ensuring the spatial coherence of the Raman comb. Two experimental setups were then realized to examine the comb’s coherence, starting with the intra-pulse aspect. An infrared laser adjustable in pulse duration, energy, and repetition rate was coupled into the hydrogen-filled fiber to generate the comb, then analyzed at the output with a Mach-Zehnder interferometer with high temporal resolution (∼ fs) and wide dynamic range (approximately 50 ps). The results showed that working in the range of 3 − 10 ps and 1 − 10 µJ minimizes parasitic effects such as the Kerr effect, and the mutual coherence is close to unity for all first-order Stokes and anti-Stokes lines, as confirmed by numerical calculations. The study of inter-pulse coherence revealed a complex behavior for pulses spaced less than 1 ns apart and a decrease in coherence corresponding to the coherence relaxation time (∼ 2 ns) for longer delays between pulses. These results highlight the importance of controlling the energy and delay of pulses to maintain high coherence and suggest that excitation lasers with repetition rates around 400 MHz or more can generate mode-locked lasers based on our approach. In conclusion, the advances made during this thesis on the coherence properties of frequency combs demonstrate the potential of stimulated Raman scattering in HCPCFs for optical wave synthesis and pave the way for other applications such as frequency conversion for quantum optics, optical trapping, and molecular cooling
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Perrot, Jean-Luc. „Explorations optiques multimodales et multiéchelles non invasives appliquées au revêtement cutanéomuqueux , étendues à l'appareil oculaire antérieur“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSES010/document.

Der volle Inhalt der Quelle
Annotation:
Après une introduction brève de l’historique de l’imagerie dermatologique non invasive, ce travail est divisé 3 parties. 1) Présentation d’un projet de développement d’un tomographe à cohérence optique miniaturisé, peu onéreu devant permettre une diffusion de cette technique aux dermatologues exerçant en dehors des hôpitaux. Il s’agi d’un projet ANR DOCT-VCSEL Portable Optical Coherence Tomography with MEMS-VCSEL swept- sources for skin analysis ANR 2015 / Défi sociétal « Vie, Santé et Bien-Etre » Axe 13 « Technologies pour la santé » 2) Présentation d’un projet dont le but est l’identification de lésions cutanées cancéreuses au moyen d’un nouvel OCT haute définition développé par la société DAMAE, issue de l’Institut supérieur d’Optique de Palaiseau. Il s’agit d’un dispositif qui sera dans un premier temps réservé aux centre d’excellence en imagerie dermatologique. 3) la reprise des 52 publications ayant trait à l’imagerie cutanée auxquelles j’ai participé et référencées dans les bases de données internationales au 31 décembre 2016. Ce travail couvre l’ensemble de l’imagerie non invasive dermatologique moderne et aborde des sujets qui n’avaient jamais été étudié de la sorte. Notamment les muqueuses et l’appareil oculaire antérieur mais aussi l’identification par microscopie confocale des marge chirurgicales ou l’association microscopie confocale spectrométrie Raman
After a brief introduction to the history of non-invasive dermatological imaging, this work is divided into 3 parts. 1) Presentation of a project for the development of a low-cost miniaturized optical coherence tomograph to allow dissemination of this technique to dermatologists practicing outside hospitals. This is an ANR project: DOCT-VCSEL Portable Optical Coherence Tomography with MEMS-VCSEL swept-sources for skin analysis ANR 2015 / Societal Challenge "Life, Health and Welfare" Axis 13 “Technologies for Health" 2) Presentation of a project whose goal is the identification of cancer skin lesions by means of a new high definition OCT developed by the company DAMAE, resulting from the Higher Institute of Optics of Palaiseau. It is a device that will initially be reserved for centers of excellence in dermatological imaging. 3) Presentation of 52 publications related to skin imaging, in which I participated, and referenced in the international databases as of December 31, 2016. This work covers all modern dermatological non-invasive imaging and addresses Subjects that had never been studied in this way. Notably the mucous membranes and the anterior ocular apparatus but also the identification by confocal microscopy of the surgical margins or the association confocal microscopy Raman spectrometry
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Smith, Brett. „Coherent Anti-Stokes Raman Scattering Miniaturized Microscope“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24281.

Der volle Inhalt der Quelle
Annotation:
Microscopy techniques have been developed and refined over multiple decades, but innovation around single photon modalities has slowed. The advancement of the utility of information acquired, and minimum resolution available is seemingly reaching an asymptote. The fusion of light microscopy and well-studied nonlinear processes has broken through this barrier and enabled the collection of vast amounts of additional information beyond the topographical information relayed by traditional microscopes. Through nonlinear imaging modalities, chemical information can also be extracted from tissue. Nonlinear microscopy also can beat the resolution limit caused by diffraction, and offers up three-dimensional capabilities. The power of nonlinear imaging has been demonstrated by countless research groups, solidifying it as a major player in biomedical imaging. The value of a nonlinear imaging system could be enhanced if a reduction in size would permit the insertion into bodily cavities, as has been demonstrated by linear imaging endoscopes. The miniaturization of single photon imaging devices has led to significant advancements in diagnostics and treatment in the medical field. Much more information can be extracted from a patient if the tissue can be imaged in vivo, a capability that traditional, bulky, table top microscopes cannot offer. The development of new technologies in optics has enabled the miniaturization of many critical components of standard microscopes. It is possible to combine nonlinear techniques with these miniaturized elements into a portable, hand held microscope that can be applied to various facets of the biomedical field. The research demonstrated in this thesis is based on the selection, testing and assembly of several miniaturized optical components for use as a nonlinear imaging device. This thesis is the first demonstration of a fibre delivered, microelectromechanical systems mirror with miniaturized optics housed in a portable, hand held package. Specifically, it is designed for coherent anti-Stokes Raman scattering, second harmonic generation, and two-photon excitation fluorescence imaging. Depending on the modality being exploited, different chemical information can be extracted from the sample being imaged. This miniaturized microscope can be applied to diagnostics and treatments of spinal cord diseases and injuries, atherosclerosis research, cancer tumour identification and a plethora of other biomedical applications. The device that will be revealed in the upcoming text is validated by demonstrating all designed-for nonlinear modalities, and later will be used to perform serialized imaging of myelin of a single specimen over time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kavanagh, Thomas Christopher. „Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy“. Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/hyperspectral-coherent-antistokes-raman-scattering-microscopy(14952c6f-e333-4596-950f-29be55cbca44).html.

Der volle Inhalt der Quelle
Annotation:
Possessing high three dimensional optical sectioning capabilities and deriving chemical contrast from the intrinsic molecular vibrations of the sample, coherent anti-Stokes Raman scattering (CARS) microscopy has the ability to deliver high sensitivity non-invasive biological imaging. It is, however, accompanied by a deleterious non-resonant background (NRB) which acts to reduce the contrast and severely complicate analysis. Computational approaches are currently favoured for removing this NRB; however, these result in significant spectrally varying errors. This thesis concerns the development and subsequent implementation of a CARS platform employing a novel, all-optical, non-resonant background removal mechanism: Spectral Interferometric Polarisation Coherent Anti-Stokes Raman Scattering (SIPCARS). Exploiting the phase change that accompanies a Raman resonance and employing an elliptical pump/probe beam and linear Stokes beam, SIPCARS allows the complete removal of the NRB. The resulting SIPCARS spectra encode mode symmetry information into the amplitude response which can be directly related to polarisation resolved spontaneous Raman scattering spectra. Verification of the SIPCARS methodology was achieved using spectra acquired from pure liquid samples which were in complete agreement with the corresponding polarisation resolved spontaneous Raman scattering spectra. The multiplexing limit of the system was assessed using several multi-component polymer bead mixtures and a lower limit of four determined. High signal-to-noise ratio SIPCARS imaging of a HeLa cell in the vibrational fingerprint region was acquired, from which it was possible to identify lipid droplets and subsequently, by producing ratio images, assess their degree of lipid unsaturation and the level of oxidised lipid content. The effect of a naturally derived phytotherapeutic lipid metabolism altering drug on the lipid droplets, contained within wild type N2 Caenorhabditis elegans nematodes, was addressed using SIPCARS. Assessing lipid unsaturation and area fraction, the drug was shown to produce a marked effect: a significant reduction in storage of saturated fatty acids post exposure. Additionally the ability of SIPCARS to differentiate between a variety of different C. elegans mutants was also demonstrated. SIPCARS currently provides perhaps the only viable route to attain truly quantitative NRB-free CARS data; however, expanding on the foundation provided by this thesis, and following further development, it has the potential for profound implications in a wide range of areas including fundamental life sciences research, novel drug characterisation and histopathology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Viranna, Narendra Balaguru. „Coherent anti-Stokes Raman spectroscopy of diamond“. Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/26229.

Der volle Inhalt der Quelle
Annotation:
Experiments were performed to investigate Coherent Anti-Stokes Raman Scattering (CARS) in diamond. Aspects of this type of non-linear scattering are presented theoretically, and various experimental configurations were attempted in order to study them. These included the dependence of the CARS signal intensity on the intensities of the two exciting frequency-doubled Nd:YAG (pump) and dye (Stokes) lasers, the variation of the CARS signal polarization as a function of the lasers' polarization, and the dependence of the CARS signal intensity on the phase mismatch of the laser beams. The phase mismatch measurement confirmed the predicted sinc² nature of the CARS signal intensity, while· the polarization measurements provided new information on the ratio of the non-vanishing components of the cubic susceptibility x³ of diamond. The CARS signal intensity was found to change linearly with the dye laser intensity and quadratically with the Nd: Y AG laser intensity. The CARS signal was found at the predicted 1332 cm⁻¹ shift from the doubled Nd:YAG emission, and its linewidth of 1.2 cm⁻¹ is in agreement with the spontaneous Raman linewidth.The spectral data were fitted to a modified Voigt profile containing the non-resonant cubic susceptibility contribution, and this allowed us to establish the ratio of the resonant and non-resonant parts of x³. An attempt to generate Stimulated Raman Scattering in diamond was unsuccessful.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Beaman, R. A. „Two beam coherent spectroscopy“. Thesis, Cardiff University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Raman coherence"

1

Series, G. W. Laser spectroscopy and other topics: Selected papers of G.W. Series, Raman professor, 1982-83. Bangalore: Indian Academy of Sciences, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Marowsky, Gerd, und Valery V. Smirnov, Hrsg. Coherent Raman Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77194-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cheng, Ji-Xin, und Xiaoliang Sunney Xie. Coherent Raman scattering microscopy. Boca Raton: CRC Press, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Marowsky, Gerd. Coherent Raman Spectroscopy: Recent Advances. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

International, Symposium on Coherent Raman Spectroscopy (1990 Samarkand Uzbekistan). Coherent Raman spectroscopy: Recent advances : proceedings of the International Symposium on Coherent Raman Spectroscopy, Samarkand, USSR, September 18-20, 1990. Berlin: Springer-Verlag, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hiroyuki, Matsui, Kawamura Yoshiro und United States. National Aeronautics and Space Administration., Hrsg. Measurement of detonation temperature of hydrogen-oxygen mixture by CARS (Coherent Anti-Stokes Raman Spectroscopy). Washington, DC: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

M, Castellucci Emilio, Righini Roberto und Foggi Paolo, Hrsg. Coherent Raman spectroscopy: Applications and new development : XI European CARS Workshop, March 23-25, 1992, Florence, Italy. Singapore: World Scientific, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Eesley, G. L. Coherent Raman Spectroscopy. Elsevier Science & Technology Books, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Smirnov, Valery V. Coherent Raman Spectroscopy. Island Press, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cheng, Ji-Xin, und Xiaoliang Sunney Xie. Coherent Raman Scattering Microscopy. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Raman coherence"

1

Dixit, Sham, Mark Hermann und Tom Karr. „High Intensity Effects in Raman Scattering“. In Coherence and Quantum Optics VI, 227–36. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kuo, S. J., und M. G. Raymer. „Spatial Quantum Fluctuations in Stimulated Raman Scattering“. In Coherence and Quantum Optics VI, 627–30. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Raymer, M. G., Z. W. Li und I. A. Walmsley. „Temporal Quantum Fluctuations in Stimulated Raman Scattering“. In Coherence and Quantum Optics VI, 977–80. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hemmer, P. R., M. S. Shahriar, D. P. Katz, P. Kumar, J. Donoghue und M. Cronin-Golomb. „Optical Phase Conjugation in the Double Raman System“. In Coherence and Quantum Optics VII, 435–36. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_91.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pospíchal, Milan, und Jan Peřina. „Quantum Theory of Light Propagation in Raman Scattering“. In Coherence and Quantum Optics VII, 447–48. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_97.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Swanson, R. C., D. C. MacPherson und J. L. Carlsten. „Quantum Fluctuations in the Stimulated Raman Scattering Spectrum“. In Coherence and Quantum Optics VI, 1125–29. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rosenberger, A. T. „Amplitude and Phase Dynamics of Superradiant and Raman Pulse Trains“. In Coherence and Quantum Optics VI, 1019–21. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gauthier, Daniel J., und Michael D. Stenner. „Pulse propagation in a high-gain bichromatically-driven Raman amplifier“. In Coherence and Quantum Optics VIII, 619–20. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lu, Weiping, R. G. Harrison und P. K. Gupta. „Nonlinear Dynamics of Raman Lasers in the Good and Bad Cavity Limit“. In Coherence and Quantum Optics VI, 721–25. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Smith, D. D., A. Oien, G. T. Bennett und T. Monarski. „Spectral and Spatial Coherence in Solid State Raman Lasers“. In Frontiers of Laser Physics and Quantum Optics, 375–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-07313-1_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Raman coherence"

1

Littleton, Brad, Simon Ameer-Beg, Frederic Festy, David Richards, P. M. Champion und L. D. Ziegler. „Interferometric Coherent Raman Micro-Spectroscopy with a Low Coherence Supercontinuum Source“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Malinovsky, Vladimir S., P. M. Champion und L. D. Ziegler. „Adiabatic Optimal Control of CARS Coherence“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Robles, Francisco E., Kevin C. Zhou, Martin C. Fischer und Warren S. Warren. „Stimulated Raman scattering (SRS) spectroscopic OCT (Conference Presentation)“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI, herausgegeben von Joseph A. Izatt, James G. Fujimoto und Valery V. Tuchin. SPIE, 2017. http://dx.doi.org/10.1117/12.2254829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sun, Yuhan, Karunakaran Venugopal, Abdelkrim Benabbas, Arthur McClelland, Paul Champion, P. M. Champion und L. D. Ziegler. „Vibrational Coherence Spectroscopy Investigation of Cytochrome c Unfolding“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482636.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sugawara, Shuto, Shun Fujii, Shota Sota und Takasumi Tanabe. „Stability and mutual coherence measurement of a Raman microcomb in a silica WGM microresonator“. In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fw4j.3.

Der volle Inhalt der Quelle
Annotation:
We investigated the stability, longitudinal spacing, and mutual coherence of a generated Raman microcomb and found that we can obtain a highly stable and coherent Raman microcomb even without a four-wave mixing process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tahara, Tahei, P. M. Champion und L. D. Ziegler. „Vibrational Spectroscopy Using Short Optical Pulses: Coherence, Transients and Interfaces“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482459.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sentosa, Ryan, Clara Stiebing, Matthias Eibel, Matthias Salas, Wim de Jong, Izabella Jolan-Jahn, Michael Schmitt et al. „Multimodal optical coherence tomography, Raman spectroscopy and IR fundus imaging for in vivo retinal imaging“. In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/oct.2022.cs3e.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Müller, M., Klaas Wynne und J. D. W. van Voorst. „High time resolution and coherence effects with incoherent light in the Raman Fringe Decay“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.wc3.

Der volle Inhalt der Quelle
Annotation:
Since 1984, many theoretical and experimental studies have shown that the time resolution in certain four-wave-mixing experiments (e.g. degenerate four-wave-mixing, coherent Stokes Raman scattering) is determined by the coherence time of the pulses rather than their widths [1]. In this paper it is shown that this concept is also valid for a new experimental technique: the Raman Fringe Decay (RFD) [2]. Furthermore it is shown that the interpretation of the results becomes more complex when the detection bandwidth is small compared to the inverse dephasing time due to coherence effects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hayashi, M., und Y. Fujimura. „Origin of ultrafast dynamics in time-resolved impulsive stimulated Raman scattering (ISRS) from molecules in liquids.“ In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.tud3.

Der volle Inhalt der Quelle
Annotation:
1. One of the features in ultrashort time-resolved nonlinear coherent scattering spectroscopy is creation of a transient intermolecular coherence in molecular liquids. 1,2 For example, teraheltz quantum beats appear in time-resolved coherent anti-Stokes Raman scattering (CARS) and time-resolved impulsive stimulated Raman scattering (ISRS) profiles as a result of the creation of the intermolecular vibrational coherence. Such time-resolved profiles provide us information on the mechanism of the intermolecular dynamics. Recently, Nelson group has reported the time-resolved ISRS profile of dibromomethane liquid.2 The most distinctive feature is the appearance of 5.2 teraheltz quantum beat with two apparent decay components. The quantum beat is associated with the creation of intermolecular, vibrational coherence between Raman transitions of 173 cm-1 bending mode of dibromomethane molecules at different sites. The time-development behavior was not clarified from the microscopic point of view.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chathanathil, Jabir, Gengyuan Liu und Svetlana Malinovskaya. „Remote detection using maximal coherence control technique in coherent anti-Stokes Raman spectroscopy“. In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.lm3b.5.

Der volle Inhalt der Quelle
Annotation:
A theoretical framework for the remote detection of molecules is presented in which a quantum control technique, determined to maximize the vibrational coherence in coherent anti-Stokes Raman spectroscopy, is used to optimize the backscattered signal from a cloud of molecules.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Raman coherence"

1

Shore, B. W., R. Sacks und T. Karr. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III. Office of Scientific and Technical Information (OSTI), Februar 1987. http://dx.doi.org/10.2172/6460116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1033507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Siwecki, S., und L. Dosser. Investigation of a simulated tritium plasma using Coherent Anti-Stokes Raman Spectroscopy. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5198897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Morgen, Michael Mark. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/501549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Palmer, R. E. The CARSFT computer code calculating coherent anti-Stokes Raman spectra: User and programmer information. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/6399189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Singh, J. P., und Fang-Yu Yueh. Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10189541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lucht, Robert. Polarization Spectroscopy And Electronic- Resonance-Enhanced Coherent Anti-stokes Raman Scattering For Quantitative Concentration Measurements. Office of Scientific and Technical Information (OSTI), Mai 2003. http://dx.doi.org/10.2172/1854342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lucht, Robert P. (DURIP 09) Ultrafast Laser System for Coherent Anti-Stokes Raman Scattering Measurements at Data Rates of 5 kHz. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada564372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yaney, Perry P., und John W. Parish. Studies of Surface Deactivation of Vibrationally-Excited Homonuclear Molecules in Gaseous Discharge Media Using Coherent Anti-Stokes Raman Spectroscopy (CARS). Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada369109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie