Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Rainbow subgraph.

Zeitschriftenartikel zum Thema „Rainbow subgraph“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Rainbow subgraph" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Axenovich, Maria, Tao Jiang und Z. Tuza. „Local Anti-Ramsey Numbers of Graphs“. Combinatorics, Probability and Computing 12, Nr. 5-6 (November 2003): 495–511. http://dx.doi.org/10.1017/s0963548303005868.

Der volle Inhalt der Quelle
Annotation:
A subgraph H in an edge-colouring is properly coloured if incident edges of H are assigned different colours, and H is rainbow if no two edges of H are assigned the same colour. We study properly coloured subgraphs and rainbow subgraphs forced in edge-colourings of complete graphs in which each vertex is incident to a large number of colours.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lestari, Dia, und I. Ketut Budayasa. „BILANGAN KETERHUBUNGAN PELANGI PADA PEWARNAAN-SISI GRAF“. MATHunesa: Jurnal Ilmiah Matematika 8, Nr. 1 (23.04.2020): 25–34. http://dx.doi.org/10.26740/mathunesa.v8n1.p25-34.

Der volle Inhalt der Quelle
Annotation:
Let be a graph. An edge-coloring of is a function , where is a set of colors. Respect to a subgraph of is called a rainbow subgraph if all edges of get different colors. Graph is called rainbow connected if for every two distinct vertices of is joined by a rainbow path. The rainbow connection number of , denoted by , is the minimum number of colors needed in coloring all edges of such that is a rainbow connected. The main problem considered in this thesis is determining the rainbow connection number of graph. In this thesis, we determine the exact value of the rainbow connection number of some classes of graphs such as Cycles, Complete graph, and Tree. We also determining the lower bound and upper bound for the rainbow connection number of graph. Keywords: Rainbow Connection Number, Graph, Edge-Coloring on Graph.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

KOSTOCHKA, ALEXANDR, und MATTHEW YANCEY. „Large Rainbow Matchings in Edge-Coloured Graphs“. Combinatorics, Probability and Computing 21, Nr. 1-2 (02.02.2012): 255–63. http://dx.doi.org/10.1017/s0963548311000605.

Der volle Inhalt der Quelle
Annotation:
Arainbow subgraphof an edge-coloured graph is a subgraph whose edges have distinct colours. Thecolour degreeof a vertexvis the number of different colours on edges incident withv. Wang and Li conjectured that fork≥ 4, every edge-coloured graph with minimum colour degreekcontains a rainbow matching of size at least ⌈k/2⌉. A properly edge-colouredK4has no such matching, which motivates the restrictionk≥ 4, but Li and Xu proved the conjecture for all other properly coloured complete graphs. LeSaulnier, Stocker, Wenger and West showed that a rainbow matching of size ⌊k/2⌋ is guaranteed to exist, and they proved several sufficient conditions for a matching of size ⌈k/2⌉. We prove the conjecture in full.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hüffner, Falk, Christian Komusiewicz, Rolf Niedermeier und Martin Rötzschke. „The Parameterized Complexity of the Rainbow Subgraph Problem“. Algorithms 8, Nr. 1 (27.02.2015): 60–81. http://dx.doi.org/10.3390/a8010060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Matos Camacho, Stephan, Ingo Schiermeyer und Zsolt Tuza. „Approximation algorithms for the minimum rainbow subgraph problem“. Discrete Mathematics 310, Nr. 20 (Oktober 2010): 2666–70. http://dx.doi.org/10.1016/j.disc.2010.03.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Koch, Maria, Stephan Matos Camacho und Ingo Schiermeyer. „Algorithmic approaches for the minimum rainbow subgraph problem“. Electronic Notes in Discrete Mathematics 38 (Dezember 2011): 765–70. http://dx.doi.org/10.1016/j.endm.2011.10.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gyárfás, András, Jenő Lehel und Richard H. Schelp. „Finding a monochromatic subgraph or a rainbow path“. Journal of Graph Theory 54, Nr. 1 (2006): 1–12. http://dx.doi.org/10.1002/jgt.20179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

LOH, PO-SHEN, und BENNY SUDAKOV. „Constrained Ramsey Numbers“. Combinatorics, Probability and Computing 18, Nr. 1-2 (März 2009): 247–58. http://dx.doi.org/10.1017/s0963548307008875.

Der volle Inhalt der Quelle
Annotation:
For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge colouring of the complete graph on n vertices (with any number of colours) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colours. It is an immediate consequence of the Erdős–Rado Canonical Ramsey Theorem that f(S, T) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang and Ling showed that f(S, T) ≤ O(st2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schiermeyer, Ingo. „On the minimum rainbow subgraph number of a graph“. Ars Mathematica Contemporanea 6, Nr. 1 (01.06.2012): 83–88. http://dx.doi.org/10.26493/1855-3974.246.94d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Katrenič, Ján, und Ingo Schiermeyer. „Improved approximation bounds for the minimum rainbow subgraph problem“. Information Processing Letters 111, Nr. 3 (Januar 2011): 110–14. http://dx.doi.org/10.1016/j.ipl.2010.11.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Xiang, Changyuan, Yongxin Lan, Qinghua Yan und Changqing Xu. „The Outer-Planar Anti-Ramsey Number of Matchings“. Symmetry 14, Nr. 6 (16.06.2022): 1252. http://dx.doi.org/10.3390/sym14061252.

Der volle Inhalt der Quelle
Annotation:
A subgraph H of an edge-colored graph G is called rainbow if all of its edges have different colors. Let ar(G,H) denote the maximum positive integer t, such that there is a t-edge-colored graph G without any rainbow subgraph H. We denote by kK2 a matching of size k and On the class of all maximal outer-planar graphs on n vertices, respectively. The outer-planar anti-Ramsey number of graph H, denoted by ar(On,H), is defined as max{ar(On,H)|On∈On}. It seems nontrivial to determine the exact values for ar(On,H) because most maximal outer-planar graphs are asymmetry. In this paper, we obtain that ar(On,kK2)≤n+3k−8 for all n≥2k and k≥6, which improves the existing upper bound for ar(On,kK2), and prove that ar(On,kK2)=n+2k−5 for n=2k and k≥5. We also obtain that ar(On,6K2)=n+6 for all n≥29.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yuan, Chen, und Haibin Kan. „Revisiting a randomized algorithm for the minimum rainbow subgraph problem“. Theoretical Computer Science 593 (August 2015): 154–59. http://dx.doi.org/10.1016/j.tcs.2015.05.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Popa, Alexandru. „Better lower and upper bounds for the minimum rainbow subgraph problem“. Theoretical Computer Science 543 (Juli 2014): 1–8. http://dx.doi.org/10.1016/j.tcs.2014.05.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

SUN, YUEFANG. „The (3, l)-Rainbow Edge-Index of Cartesian Product Graphs“. Journal of Interconnection Networks 17, Nr. 03n04 (September 2017): 1741009. http://dx.doi.org/10.1142/s0219265917410092.

Der volle Inhalt der Quelle
Annotation:
For a graph G and a vertex subset [Formula: see text] of at least two vertices, an S-tree is a subgraph T of G that is a tree with [Formula: see text]. Two S-trees are said to be edge-disjoint if they have no common edge. Let [Formula: see text] denote the maximum number of edge-disjoint S-trees in G. For an integer K with [Formula: see text], the generalized k-edge-connectivity is defined as [Formula: see text]. An S-tree in an edge-colored graph is rainbow if no two edges of it are assigned the same color. Let [Formula: see text] and l be integers with [Formula: see text], the [Formula: see text]-rainbow edge-index [Formula: see text] of G is the smallest number of colors needed in an edge-coloring of G such that for every set S of k vertices of G, there exist l edge-disjoint rainbow S-trees.In this paper, we study the [Formula: see text]-rainbow edge-index of Cartesian product graphs and get a sharp upper bound for [Formula: see text] , where G and H are connected graphs with orders at least three, and [Formula: see text] denotes the Cartesian product of G and H.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mao, Yaping, und Yongtang Shi. „The complexity of determining the vertex-rainbow index of graphs“. Discrete Mathematics, Algorithms and Applications 07, Nr. 04 (Dezember 2015): 1550047. http://dx.doi.org/10.1142/s1793830915500470.

Der volle Inhalt der Quelle
Annotation:
The concept of the [Formula: see text]-rainbow index of a network comes from the communication of information between agencies of government, which was introduced by Chartrand et al. in 2010. As a natural counterpart of the [Formula: see text]-rainbow index, the concept of [Formula: see text]-vertex-rainbow index was also introduced. For a graph [Formula: see text] and a set [Formula: see text] of at least two vertices, an [Formula: see text]-Steiner tree or a Steiner tree connecting [Formula: see text] (or simply, an [Formula: see text]-tree) is such a subgraph [Formula: see text] of [Formula: see text] that is a tree with [Formula: see text]. For [Formula: see text] and [Formula: see text], an [Formula: see text]-Steiner tree [Formula: see text] is said to be a vertex-rainbow [Formula: see text]-tree if the vertices of [Formula: see text] have distinct colors. For a fixed integer [Formula: see text] with [Formula: see text], the vertex-coloring [Formula: see text] of [Formula: see text] is called a [Formula: see text]-vertex-rainbow coloring if for every [Formula: see text]-subset [Formula: see text] of [Formula: see text] there exists a vertex-rainbow [Formula: see text]-tree. In this case, [Formula: see text] is called vertex-rainbow [Formula: see text]-tree-connected. The minimum number of colors that are needed in a [Formula: see text]-vertex-rainbow coloring of [Formula: see text] is called the [Formula: see text]-vertex-rainbow index of [Formula: see text], denoted by [Formula: see text]. In this paper, we study the complexity of determining the [Formula: see text]-vertex-rainbow index of a graph and prove that computing [Formula: see text] is [Formula: see text]-Hard. Moreover, we show that it is [Formula: see text]-Complete to decide whether [Formula: see text]. We also prove that the following problem is [Formula: see text]-Complete: Given a vertex-colored graph [Formula: see text], check whether the given coloring makes [Formula: see text] vertex-rainbow [Formula: see text]-tree-connected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Tirodkar, Sumedh, und Sundar Vishwanathan. „On the Approximability of the Minimum Rainbow Subgraph Problem and Other Related Problems“. Algorithmica 79, Nr. 3 (11.01.2017): 909–24. http://dx.doi.org/10.1007/s00453-017-0278-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Goddard, Wayne, und Honghai Xu. „Vertex colorings without rainbow subgraphs“. Discussiones Mathematicae Graph Theory 36, Nr. 4 (2016): 989. http://dx.doi.org/10.7151/dmgt.1896.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Cui, Qing, Qinghai Liu, Colton Magnant und Akira Saito. „Implications in rainbow forbidden subgraphs“. Discrete Mathematics 344, Nr. 4 (April 2021): 112267. http://dx.doi.org/10.1016/j.disc.2020.112267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Holub, Přemysl, Zdeněk Ryjáček, Ingo Schiermeyer und Petr Vrána. „Rainbow connection and forbidden subgraphs“. Discrete Mathematics 338, Nr. 10 (Oktober 2015): 1706–13. http://dx.doi.org/10.1016/j.disc.2014.08.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Gorgol, Izolda. „Avoiding rainbow 2-connected subgraphs“. Open Mathematics 15, Nr. 1 (17.04.2017): 393–97. http://dx.doi.org/10.1515/math-2017-0035.

Der volle Inhalt der Quelle
Annotation:
Abstract While defining the anti-Ramsey number Erdős, Simonovits and Sós mentioned that the extremal colorings may not be unique. In the paper we discuss the uniqueness of the colorings, generalize the idea of their construction and show how to use it to construct the colorings of the edges of complete split graphs avoiding rainbow 2-connected subgraphs. These colorings give the lower bounds for adequate anti-Ramsey numbers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Fujita, Shinya, und Colton Magnant. „Forbidden Rainbow Subgraphs That Force Large Highly Connected Monochromatic Subgraphs“. SIAM Journal on Discrete Mathematics 27, Nr. 3 (Januar 2013): 1625–37. http://dx.doi.org/10.1137/120896906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Li, Wenjing, Xueliang Li und Jingshu Zhang. „Rainbow vertex-connection and forbidden subgraphs“. Discussiones Mathematicae Graph Theory 38, Nr. 1 (2018): 143. http://dx.doi.org/10.7151/dmgt.2004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Li, Wenjing, Xueliang Li und Jingshu Zhang. „3-Rainbow Index and Forbidden Subgraphs“. Graphs and Combinatorics 33, Nr. 4 (22.05.2017): 999–1008. http://dx.doi.org/10.1007/s00373-017-1783-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Barrus, Michael D., Michael Ferrara, Jennifer Vandenbussche und Paul S. Wenger. „Colored Saturation Parameters for Rainbow Subgraphs“. Journal of Graph Theory 86, Nr. 4 (08.03.2017): 375–86. http://dx.doi.org/10.1002/jgt.22132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kisielewicz, Andrzej, und Marek Szykuła. „Rainbow Induced Subgraphs in Proper Vertex Colorings“. Fundamenta Informaticae 111, Nr. 4 (2011): 437–51. http://dx.doi.org/10.3233/fi-2011-572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Axenovich, Maria, und Perry Iverson. „Edge-colorings avoiding rainbow and monochromatic subgraphs“. Discrete Mathematics 308, Nr. 20 (Oktober 2008): 4710–23. http://dx.doi.org/10.1016/j.disc.2007.08.092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wagner, Adam Zsolt. „Large Subgraphs in Rainbow-Triangle Free Colorings“. Journal of Graph Theory 86, Nr. 2 (07.03.2017): 141–48. http://dx.doi.org/10.1002/jgt.22117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Rödl, Vojtech, und Zsolt Tuza. „Rainbow subgraphs in properly edge-colored graphs“. Random Structures & Algorithms 3, Nr. 2 (1992): 175–82. http://dx.doi.org/10.1002/rsa.3240030207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ma, Zhiqiang, Yaping Mao, Ingo Schiermeyer und Meiqin Wei. „Complete bipartite graphs without small rainbow subgraphs“. Discrete Applied Mathematics 346 (März 2024): 248–62. http://dx.doi.org/10.1016/j.dam.2023.12.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Alon, Noga, Tao Jiang, Zevi Miller und Dan Pritikin. „Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints“. Random Structures and Algorithms 23, Nr. 4 (11.11.2003): 409–33. http://dx.doi.org/10.1002/rsa.10102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Li, Xihe, und Ligong Wang. „Forbidden rainbow subgraphs that force large monochromatic or multicolored k-connected subgraphs“. Discrete Applied Mathematics 285 (Oktober 2020): 18–29. http://dx.doi.org/10.1016/j.dam.2020.05.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Goddard, Wayne, und Robert Melville. „Coloring subgraphs with restricted amounts of hues“. Open Mathematics 15, Nr. 1 (22.09.2017): 1171–80. http://dx.doi.org/10.1515/math-2017-0098.

Der volle Inhalt der Quelle
Annotation:
Abstract We consider vertex colorings where the number of colors given to specified subgraphs is restricted. In particular, given some fixed graph F and some fixed set A of positive integers, we consider (not necessarily proper) colorings of the vertices of a graph G such that, for every copy of F in G, the number of colors it receives is in A. This generalizes proper colorings, defective coloring, and no-rainbow coloring, inter alia. In this paper we focus on the case that A is a singleton set. In particular, we investigate the colorings where the graph F is a star or is 1-regular.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Czap, Július. „Rainbow subgraphs in edge-colored planar and outerplanar graphs“. Discrete Mathematics Letters 12 (23.06.2023): 73–77. http://dx.doi.org/10.47443/dml.2023.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Liu, Yuchen, und Yaojun Chen. „Rainbow subgraphs in Hamiltonian cycle decompositions of complete graphs“. Discrete Mathematics 346, Nr. 8 (August 2023): 113479. http://dx.doi.org/10.1016/j.disc.2023.113479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Klavžar, Sandi, und Gašper Mekiš. „On the rainbow connection of Cartesian products and their subgraphs“. Discussiones Mathematicae Graph Theory 32, Nr. 4 (2012): 783. http://dx.doi.org/10.7151/dmgt.1644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Brousek, Jan, Přemysl Holub, Zdeněk Ryjáček und Petr Vrána. „Finite families of forbidden subgraphs for rainbow connection in graphs“. Discrete Mathematics 339, Nr. 9 (September 2016): 2304–12. http://dx.doi.org/10.1016/j.disc.2016.02.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Bradshaw, Peter. „Rainbow spanning trees in random subgraphs of dense regular graphs“. Discrete Mathematics 347, Nr. 6 (Juni 2024): 113960. http://dx.doi.org/10.1016/j.disc.2024.113960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ding, Jili, Hong Bian und Haizheng Yu. „Anti-Ramsey Numbers in Complete k-Partite Graphs“. Mathematical Problems in Engineering 2020 (07.09.2020): 1–5. http://dx.doi.org/10.1155/2020/5136104.

Der volle Inhalt der Quelle
Annotation:
The anti-Ramsey number ARG,H is the maximum number of colors in an edge-coloring of G such that G contains no rainbow subgraphs isomorphic to H. In this paper, we discuss the anti-Ramsey numbers ARKp1,p2,…,pk,Tn, ARKp1,p2,…,pk,ℳ, and ARKp1,p2,…,pk,C of Kp1,p2,…,pk, where Tn,ℳ, and C denote the family of all spanning trees, the family of all perfect matchings, and the family of all Hamilton cycles in Kp1,p2,…,pk, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Jahanbekam, Sogol, und Douglas B. West. „Rainbow Spanning Subgraphs of Small Diameter in Edge-Colored Complete Graphs“. Graphs and Combinatorics 32, Nr. 2 (06.06.2015): 707–12. http://dx.doi.org/10.1007/s00373-015-1588-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Alon, Noga, Alexey Pokrovskiy und Benny Sudakov. „Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles“. Israel Journal of Mathematics 222, Nr. 1 (Oktober 2017): 317–31. http://dx.doi.org/10.1007/s11856-017-1592-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Holub, Přemysl, Zdeněk Ryjáček und Ingo Schiermeyer. „On forbidden subgraphs and rainbow connection in graphs with minimum degree 2“. Discrete Mathematics 338, Nr. 3 (März 2015): 1–8. http://dx.doi.org/10.1016/j.disc.2014.10.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cano, Pilar, Guillem Perarnau und Oriol Serra. „Rainbow spanning subgraphs in bounded edge–colourings of graphs with large minimum degree“. Electronic Notes in Discrete Mathematics 61 (August 2017): 199–205. http://dx.doi.org/10.1016/j.endm.2017.06.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Jahanbekam, Sogol, und Douglas B. West. „Anti-Ramsey Problems for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles, Matchings, or Trees“. Journal of Graph Theory 82, Nr. 1 (26.06.2015): 75–89. http://dx.doi.org/10.1002/jgt.21888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Jia, Yuxing, Mei Lu und Yi Zhang. „Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles and Matchings“. Graphs and Combinatorics 35, Nr. 5 (27.06.2019): 1011–21. http://dx.doi.org/10.1007/s00373-019-02053-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yuster, Raphael. „Rainbow $H$-factors“. Electronic Journal of Combinatorics 13, Nr. 1 (15.02.2006). http://dx.doi.org/10.37236/1039.

Der volle Inhalt der Quelle
Annotation:
An $H$-factor of a graph $G$ is a spanning subgraph of $G$ whose connected components are isomorphic to $H$. Given a properly edge-colored graph $G$, a rainbow $H$-subgraph of $G$ is an $H$-subgraph of $G$ whose edges have distinct colors. A rainbow $H$-factor is an $H$-factor whose components are rainbow $H$-subgraphs. The following result is proved. If $H$ is any fixed graph with $h$ vertices then every properly edge-colored graph with $hn$ vertices and minimum degree $(1-1/\chi(H))hn+o(n)$ has a rainbow $H$-factor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ehard, Stefan, Stefan Glock und Felix Joos. „A rainbow blow-up lemma for almost optimally bounded edge-colourings“. Forum of Mathematics, Sigma 8 (2020). http://dx.doi.org/10.1017/fms.2020.38.

Der volle Inhalt der Quelle
Annotation:
Abstract A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible. This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

LeSaulnier, Timothy D., Christopher Stocker, Paul S. Wenger und Douglas B. West. „Rainbow Matching in Edge-Colored Graphs“. Electronic Journal of Combinatorics 17, Nr. 1 (14.05.2010). http://dx.doi.org/10.37236/475.

Der volle Inhalt der Quelle
Annotation:
A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The color degree of a vertex $v$ is the number of different colors on edges incident to $v$. Wang and Li conjectured that for $k\geq 4$, every edge-colored graph with minimum color degree at least $k$ contains a rainbow matching of size at least $\left\lceil k/2 \right\rceil$. We prove the slightly weaker statement that a rainbow matching of size at least $\left\lfloor k/2 \right\rfloor$ is guaranteed. We also give sufficient conditions for a rainbow matching of size at least $\left\lceil k/2 \right\rceil$ that fail to hold only for finitely many exceptions (for each odd $k$).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

He, Zhen, Peter Frankl, Ervin Győri, Zequn Lv, Nika Salia, Casey Tompkins, Kitti Varga und Xiutao Zhu. „Extremal Results for Graphs Avoiding a Rainbow Subgraph“. Electronic Journal of Combinatorics 31, Nr. 1 (26.01.2024). http://dx.doi.org/10.37236/11676.

Der volle Inhalt der Quelle
Annotation:
We say that $k$ graphs $G_1,G_2,\dots,G_k$ on a common vertex set of size $n$ contain a rainbow copy of a graph $H$ if their union contains a copy of $H$ with each edge belonging to a distinct $G_i$. We provide a counterexample to a conjecture of Frankl on the maximum product of the sizes of the edge sets of three graphs avoiding a rainbow triangle. We propose an alternative conjecture, which we prove under the additional assumption that the union of the three graphs is complete. Furthermore, we determine the maximum product of the sizes of the edge sets of three graphs or four graphs avoiding a rainbow path of length three.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Axenovich, Maria, und Ryan Martin. „Avoiding Rainbow Induced Subgraphs in Vertex-Colorings“. Electronic Journal of Combinatorics 15, Nr. 1 (14.01.2008). http://dx.doi.org/10.37236/736.

Der volle Inhalt der Quelle
Annotation:
For a fixed graph $H$ on $k$ vertices, and a graph $G$ on at least $k$ vertices, we write $G\longrightarrow H$ if in any vertex-coloring of $G$ with $k$ colors, there is an induced subgraph isomorphic to $H$ whose vertices have distinct colors. In other words, if $G\longrightarrow H$ then a totally multicolored induced copy of $H$ is unavoidable in any vertex-coloring of $G$ with $k$ colors. In this paper, we show that, with a few notable exceptions, for any graph $H$ on $k$ vertices and for any graph $G$ which is not isomorphic to $H$, $G\not\!\!\longrightarrow H$. We explicitly describe all exceptional cases. This determines the induced vertex-anti-Ramsey number for all graphs and shows that totally multicolored induced subgraphs are, in most cases, easily avoidable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Correia, David Munh, Alexey Pokrovskiy und Benny Sudakov. „Short Proofs of Rainbow Matchings Results“. International Mathematics Research Notices, 17.07.2022. http://dx.doi.org/10.1093/imrn/rnac180.

Der volle Inhalt der Quelle
Annotation:
Abstract A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. The study of rainbow subgraphs goes back to the work of Euler on Latin squares and has been the focus of extensive research ever since. Many conjectures in this area roughly say that “every edge coloured graph of a certain type contains a rainbow matching using every colour.” In this paper we introduce a versatile “sampling trick,” which allows us to asymptotically solve some well-known conjectures and to obtain short proofs of old results. In particular: $\bullet $ We give the first asymptotic proof of the “non-bipartite” Aharoni–Berger conjecture, solving two conjectures of Aharoni, Berger, Chudnovsky, and Zerbib. $\bullet $ We give a very short asymptotic proof of Grinblat’s conjecture (first obtained by Clemens, Ehrenmüller, and Pokrovskiy). Furthermore, we obtain a new asymptotically tight bound for Grinblat’s problem as a function of edge multiplicity of the corresponding multigraph. $\bullet $ We give the first asymptotic proof of a 30-year-old conjecture of Alspach. $\bullet $ We give a simple proof of Pokrovskiy’s asymptotic version of the Aharoni–Berger conjecture with greatly improved error term.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie