Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rainbow subgraph“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rainbow subgraph" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rainbow subgraph"
Axenovich, Maria, Tao Jiang und Z. Tuza. „Local Anti-Ramsey Numbers of Graphs“. Combinatorics, Probability and Computing 12, Nr. 5-6 (November 2003): 495–511. http://dx.doi.org/10.1017/s0963548303005868.
Der volle Inhalt der QuelleLestari, Dia, und I. Ketut Budayasa. „BILANGAN KETERHUBUNGAN PELANGI PADA PEWARNAAN-SISI GRAF“. MATHunesa: Jurnal Ilmiah Matematika 8, Nr. 1 (23.04.2020): 25–34. http://dx.doi.org/10.26740/mathunesa.v8n1.p25-34.
Der volle Inhalt der QuelleKOSTOCHKA, ALEXANDR, und MATTHEW YANCEY. „Large Rainbow Matchings in Edge-Coloured Graphs“. Combinatorics, Probability and Computing 21, Nr. 1-2 (02.02.2012): 255–63. http://dx.doi.org/10.1017/s0963548311000605.
Der volle Inhalt der QuelleHüffner, Falk, Christian Komusiewicz, Rolf Niedermeier und Martin Rötzschke. „The Parameterized Complexity of the Rainbow Subgraph Problem“. Algorithms 8, Nr. 1 (27.02.2015): 60–81. http://dx.doi.org/10.3390/a8010060.
Der volle Inhalt der QuelleMatos Camacho, Stephan, Ingo Schiermeyer und Zsolt Tuza. „Approximation algorithms for the minimum rainbow subgraph problem“. Discrete Mathematics 310, Nr. 20 (Oktober 2010): 2666–70. http://dx.doi.org/10.1016/j.disc.2010.03.032.
Der volle Inhalt der QuelleKoch, Maria, Stephan Matos Camacho und Ingo Schiermeyer. „Algorithmic approaches for the minimum rainbow subgraph problem“. Electronic Notes in Discrete Mathematics 38 (Dezember 2011): 765–70. http://dx.doi.org/10.1016/j.endm.2011.10.028.
Der volle Inhalt der QuelleGyárfás, András, Jenő Lehel und Richard H. Schelp. „Finding a monochromatic subgraph or a rainbow path“. Journal of Graph Theory 54, Nr. 1 (2006): 1–12. http://dx.doi.org/10.1002/jgt.20179.
Der volle Inhalt der QuelleLOH, PO-SHEN, und BENNY SUDAKOV. „Constrained Ramsey Numbers“. Combinatorics, Probability and Computing 18, Nr. 1-2 (März 2009): 247–58. http://dx.doi.org/10.1017/s0963548307008875.
Der volle Inhalt der QuelleSchiermeyer, Ingo. „On the minimum rainbow subgraph number of a graph“. Ars Mathematica Contemporanea 6, Nr. 1 (01.06.2012): 83–88. http://dx.doi.org/10.26493/1855-3974.246.94d.
Der volle Inhalt der QuelleKatrenič, Ján, und Ingo Schiermeyer. „Improved approximation bounds for the minimum rainbow subgraph problem“. Information Processing Letters 111, Nr. 3 (Januar 2011): 110–14. http://dx.doi.org/10.1016/j.ipl.2010.11.005.
Der volle Inhalt der QuelleDissertationen zum Thema "Rainbow subgraph"
Matos, Camacho Stephan. „Introduction to the Minimum Rainbow Subgraph problem“. Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2012. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-85490.
Der volle Inhalt der QuelleHu, Jie. „Rainbow subgraphs and properly colored subgraphs in colored graphs“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG045.
Der volle Inhalt der QuelleIn this thesis, we study rainbow subgraphs and properly colored subgraphs in edge-colored graphs, and compatible subgraphs in gra-phs with incompatibility systems, which can be viewed as a generalization of edge-colored graphs. Compared with general graphs, edge-colored gra-phs contain more information and are able to model more complicated relations in communication net-work, social science, molecular biology and so on. Hence, the study of structures in edge-colored graphs is significant to both graph theory and other related subjects. We first study the minimum color degree condition forcing vertex-disjoint rainbow triangles in edge-colored graphs. In 2013, Li proved a best possible minimum color degree condition for the existence of a rainbow triangle. Motivated by this, we obtain a sharp minimum color degree condition guaran-teeing the existence of two vertex-disjoint rainbow triangles and propose a conjecture about the exis-tence of k vertex-disjoint rainbow triangles. Secondly, we consider the relation between the order of maximum properly colored tree in edge-colored graph and the minimum color degree. We obtain that for an edge-colored connected graph G, the order of maximum properly colored tree is at least \min\{|G|, 2\delta^{c}(G)\}, which generalizes a result of Cheng, Kano and Wang. Moreover, the lower bound 2delta^{c}(G) in our result is best possible and we characterize all extremal graphs. Thirdly, we research the minimum color degree condition guaranteeing the existence of properly colored 2-factors in edge-colored graphs. We derive an asymptotic minimum color degree con-dition forcing every properly colored 2-factor with exactly t components, which generalizes a result of Lo. We also determine the best possible mini-mum color degree condition for the existence of a properly colored 2-factor in an edge-colored bipartite graph. Finally, we study compatible factors in graphs with incompatibility systems. The notion of incom-patibility system was firstly introduced by Krivelevich, Lee and Sudakov, which can be viewed as a quantitative measure of robustness of graph properties. Recently, there has been an increasing interest in studying robustness of graph proper-ties, aiming to strengthen classical results in extremal graph theory and probabilistic combina-torics. We study the robust version of Alon--Yuster's result with respect to the incompatibility system
Matos, Camacho Stephan [Verfasser], Ingo [Akademischer Betreuer] Schiermeyer, Ingo [Gutachter] Schiermeyer und Hubert [Gutachter] Randerath. „Introduction to the Minimum Rainbow Subgraph problem / Stephan Matos Camacho ; Gutachter: Ingo Schiermeyer, Hubert Randerath ; Betreuer: Ingo Schiermeyer“. Freiberg : Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2012. http://d-nb.info/1220911321/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Rainbow subgraph"
Hüffner, Falk, Christian Komusiewicz, Rolf Niedermeier und Martin Rötzschke. „The Parameterized Complexity of the Rainbow Subgraph Problem“. In Graph-Theoretic Concepts in Computer Science, 287–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12340-0_24.
Der volle Inhalt der QuelleRodaro, Emanuele, und Pedro V. Silva. „Never Minimal Automata and the Rainbow Bipartite Subgraph Problem“. In Developments in Language Theory, 374–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22321-1_32.
Der volle Inhalt der QuelleTirodkar, Sumedh, und Sundar Vishwanathan. „On the Approximability of the Minimum Rainbow Subgraph Problem and Other Related Problems“. In Algorithms and Computation, 106–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48971-0_10.
Der volle Inhalt der QuelleMagnant, Colton, und Pouria Salehi Nowbandegani. „General Structure Under Forbidden Rainbow Subgraphs“. In Topics in Gallai-Ramsey Theory, 9–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48897-0_2.
Der volle Inhalt der QuelleMagnant, Colton, und Pouria Salehi Nowbandegani. „Gallai-Ramsey Results for Other Rainbow Subgraphs“. In Topics in Gallai-Ramsey Theory, 81–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48897-0_4.
Der volle Inhalt der Quelle„Rainbow Subgraphs and their Applications“. In Surveys in Combinatorics 2022, 191–214. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781009093927.007.
Der volle Inhalt der QuelleErdős, Paul, und Zsolt Tuza. „Rainbow Subgraphs in Edge-Colorings of Complete Graphs“. In Quo Vadis, Graph Theory? - A Source Book for Challenges and Directions, 81–88. Elsevier, 1993. http://dx.doi.org/10.1016/s0167-5060(08)70377-7.
Der volle Inhalt der Quelle