Dissertationen zum Thema „Radiotherapy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Radiotherapy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Jain, Pooja. „Optimising Radiotherapy for Cancers affected by Respiratory Motion using Image Guided Radiotherapy“. Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492923.
Der volle Inhalt der QuellePINZI, VALENTINA. „Immuno-Radiotherapy for brain glioma: sorting out the immunomodulatory effects of radiotherapy“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402376.
Der volle Inhalt der QuelleBACKGROUND. Glioblastoma (GBM) is a fast-growing and aggressive brain tumor. GBM is the most frequent malignant primary brain tumour and it can result in death in three-six months, if untreated. The current standard of care (SOC) therapy consists in maximal safe surgical resection followed by radiation therapy and adjuvant temozolomide (Stupp protocol), with a median overall survival (OS) of 8-10 months. However, more than half of GBM patients die within one year from the diagnosis, and only 5% survive more than 5 years despite aggressive therapies. Research has now shifted additional attention to methods of modulating the innate immune system for the treatment of GBM. Moreover, radiotherapy, that plays a key role in GBM treatment, has the potential to convert immunologically ‘cold’ tumors into ‘hot’ tumors by a combination of distinct mechanisms. Overall, literature data indicate that local radiation produces systemic, immune-mediated anti¬tumour and, potentially, antimetastatic effects. Additionally, the combination of local radiotherapy and immune-modulation can augment local tumour control and cause distant (abscopal) antitumour effects through increased tumour-antigen release and antigen-presenting cell (APC) cross-presentation, improved dendritic-cell (DC) function, and enhanced T cell priming. In order to sort out the immunomodulatory effects of radiotherapy for brain glioma we conducted this project, also in association with immunetherapy. The radiological response has been evaluated as well. METHODS. Radiotherapy treatment in combination with dendritic cell immunotherapy was evaluated. GL261-glioma bearing immune-competent mice were treated by means of RT (3 fractions, 1 fr/day) as exclusive and concomitant immunotherapy (dendritic cells). Two clinical trials were studied as well. The population was GBM patients treated by means of standard therapy plus DC-vaccine therapy. Response assessment of GBM after radio-chemotherapy and during immunotherapy by delayed contrast trams (treatment response assessment maps) was evaluated as well. RESULTS. Survival, CD8+ T, NK cells were significantly and slightly significant different: control vs RT vs RT-IT. We found that activated microglia persists in both tumor and contralateral brain of irradiated mice. Moreover, RT promoted antitumoral M1 polarization and RT contributed to a massive recruitment of Th1 CD4+ T cells; RT and DC combination contributes to a robust infiltrate of CD8+ T cells. CONCLUSION. Our results confirm that RT can modulate the TME creating a specific chemokine gradient involved in T cell homing. RT in combination with IT can induce an anti-tumour systemic long-lasting effector CD8+ T cell response as well as a local infiltration of NK cells and CD8+ T cells. The combinatorial approach seems to be a promising therapy for GBM patients. It might be evaluated trough other clinical trials in order to confirm the preliminary results.
Mairs, Robert J. „Targeted radiotherapy of cancer“. Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248190.
Der volle Inhalt der QuelleMillin, Anthony. „Verification of stereotactic radiotherapy“. Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/12287/.
Der volle Inhalt der QuelleEdwards, Craig Richard. „In-vivo radiotherapy dosimetry“. Thesis, Keele University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269237.
Der volle Inhalt der QuelleHelo, Y. „Cerenkov emission in radiotherapy“. Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469478/.
Der volle Inhalt der QuelleAllahverdi, Mahmoud. „Accuracy in radiotherapy dosimetry“. Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/21135.
Der volle Inhalt der QuelleCecconi, Agnese <1979>. „Stereotactict body radiotherapy (SBRT)“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4317/1/Cecconi_Agnese_tesi.pdf.
Der volle Inhalt der QuelleCecconi, Agnese <1979>. „Stereotactict body radiotherapy (SBRT)“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4317/.
Der volle Inhalt der QuelleTaylor, Alexandra. „Intensity-modulated radiotherapy for cervical cancer : optimising target volume definition and radiotherapy delivery“. Thesis, University of London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510901.
Der volle Inhalt der QuelleMurphy, Caroline Claire Scanlon. „A history of radiotherapy to 1950 : cancer and radiotherapy in Britain 1850-1950“. Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278710.
Der volle Inhalt der QuelleSteenbakkers, Roel Johannes Henricus Marinus. „Optimizing target definition for radiotherapy“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2007. http://dare.uva.nl/document/40825.
Der volle Inhalt der QuelleCufflin, Rebecca Sian. „Verification of Intensity Modulated Radiotherapy“. Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/25873/.
Der volle Inhalt der QuelleMcMahon, S. J. „Heavy Atom Radiotherapy Dose Enhancement“. Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527871.
Der volle Inhalt der QuelleLewis, R. D. „Monte Carlo modelling for radiotherapy“. Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637892.
Der volle Inhalt der QuelleJohnson, Kerstie Anne. „Predicting radiotherapy toxicity in patients treated with radical radiotherapy using predictive assays and circadian rhythm“. Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/40982.
Der volle Inhalt der QuelleBär, Werner. „Optimized delivery of intensity modulated radiotherapy“. [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965610934.
Der volle Inhalt der QuelleRadu, Calin. „Optimising Radiotherapy in Rectal Cancer Patients“. Doctoral thesis, Uppsala universitet, Enheten för onkologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-172531.
Der volle Inhalt der QuelleRojas, Callejas Ana Maria. „ARCON in experimental and clinical radiotherapy“. Doctoral thesis, Umeå : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-207.
Der volle Inhalt der QuelleMartling, Anna. „Rectal cancer : staging, radiotherapy and surgery /“. Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-461-5/.
Der volle Inhalt der QuelleLanglands, Fiona Elizabeth. „Sensitivity to radiotherapy in breast cancer“. Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582111.
Der volle Inhalt der QuelleYin, Zaizhe. „Solid state detectors in radiotherapy dosimetry“. Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288576.
Der volle Inhalt der QuelleGulliford, Sarah Louise. „Artificial neural networks applied to radiotherapy“. Thesis, Institute of Cancer Research (University Of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404474.
Der volle Inhalt der QuelleGrellet, Sophie. „Optimisation of gold nanoparticles for radiotherapy“. Thesis, Open University, 2018. http://oro.open.ac.uk/57326/.
Der volle Inhalt der QuelleAhbabi, Salma Saeed Al. „Achievable accuracy and reproducibility in radiotherapy“. Thesis, University of Surrey, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616955.
Der volle Inhalt der QuelleTaylor, Carolyn W. „Breast cancer radiotherapy and heart disease“. Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:c9dda3ca-8cb3-4a38-938d-0b75b4f6471d.
Der volle Inhalt der QuelleCheng, Kun. „Deformable models for adaptive radiotherapy planning“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22893.
Der volle Inhalt der QuelleSandberg, Linnea. „Quality assurance of a radiotherapy registry“. Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-176779.
Der volle Inhalt der QuelleLeite, Rocha Pedro. „Novel approaches to radiotherapy treatment scheduling“. Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/12281/.
Der volle Inhalt der QuelleHowarth, Ashley L., Joshua R. Niska, Kenneth Brooks, Aman Anand, Martin Bues, Carlos E. Vargas und Raman C. Mahabir. „Tissue Expanders and Proton Beam Radiotherapy“. LIPPINCOTT WILLIAMS & WILKINS, 2017. http://hdl.handle.net/10150/625389.
Der volle Inhalt der QuelleElmpt, Wouter Johannes Catharina van. „3D dose verification for advanced radiotherapy“. Maastricht : Maastricht : Universitaire Pers ; University Library, Universiteit Maastricht [host], 2009. http://arno.unimaas.nl/show.cgi?fid=14960.
Der volle Inhalt der QuelleNyholm, Tufve. „Verification of dose calculations in radiotherapy“. Doctoral thesis, Umeå : Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1931.
Der volle Inhalt der QuelleVaras, Jaime Armando. „Spectral unfolding of radiotherapy photon beams“. Thesis, The University of Sydney, 2008. https://hdl.handle.net/2123/28131.
Der volle Inhalt der QuelleCanada, Justin M. „Impaired Cardiorespiratory Fitness Following Thoracic Radiotherapy“. VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5499.
Der volle Inhalt der QuelleJayasekera, Piyakeerthi Mangala. „Practical aspects of radiotherapy gel dosimetry“. Thesis, Queensland University of Technology, 2000.
Den vollen Inhalt der Quelle findenSmith, Shaun T. „Development of gel dosimetry for radiotherapy“. Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/102759/1/Shaun_Smith_Thesis.pdf.
Der volle Inhalt der QuelleMorrey, D. „Aspects of computer automation in radiotherapy : A system for prescription, calculation, verification and recording of radiotherapy treatments“. Thesis, Bucks New University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376420.
Der volle Inhalt der QuelleBurnet, Neil Gunn. „The relationship between cellular radiation sensitivity and normal tissue response to radiotherapy : prospects for individualising radiotherapy prescriptions“. Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357208.
Der volle Inhalt der QuelleJena, Rajesh. „Optimisation of radiotherapy for patients with high-grade glioma using diffusion tensor imaging and intensity modulated radiotherapy“. Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614124.
Der volle Inhalt der QuelleLewis, Benjamin C. „Radiotherapy Response Using Intravoxel Incoherent Motion Magnetic Resonance Imaging in Liver Patients Treated with Stereotactic Body Radiotherapy“. VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5821.
Der volle Inhalt der QuelleLin, Lan. „Development and clinical application of an integrated treatment planning platform for 4D radiotherapy : a dissertation /“. San Antonio : UTHSC, 2007. http://proquest.umi.com/pqdweb?did=1400966621&sid=1&Fmt=2&clientId=70986&RQT=309&VName=PQD.
Der volle Inhalt der QuelleOlofsson, Jörgen. „Developing and evaluating dose calculation models for verification of advanced radiotherapy /“. Umeå : Strålningsvetenskaper Radiation Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-841.
Der volle Inhalt der QuelleGozbasi, Halil Ozan. „Optimization approaches for planning external beam radiotherapy“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34726.
Der volle Inhalt der QuelleRiekki, R. (Riitta). „Late dermal effects of breast cancer radiotherapy“. Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514282760.
Der volle Inhalt der QuelleGilbert, L. „Improving the safety of radiotherapy treatment delivery“. Thesis, Coventry University, 2015. http://curve.coventry.ac.uk/open/items/58d00757-edad-48c5-8676-9f5bf07ffd7c/1.
Der volle Inhalt der QuelleWyer, J. A. „Radiolysis of Molecules of Interest in Radiotherapy“. Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492265.
Der volle Inhalt der QuelleGreer, Peter Brian. „A dual assembly multileaf collimator for radiotherapy“. Title page, table of contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phg81659.pdf.
Der volle Inhalt der QuelleMoerland, Marinus Adriaan. „Magnetic resonance imaging in radiotherapy treatment planning“. [S.l.] : Utrecht : [s.n.] ; Universiteitsbibliotheek Utrecht [Host], 1996. http://www.library.uu.nl/digiarchief/dip/diss/01760825/inhoud.htm.
Der volle Inhalt der QuelleBelderbos, Josepha Sophia Antonia. „Radiotherapy in lung cancer: a moving field“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2007. http://dare.uva.nl/document/45315.
Der volle Inhalt der QuelleCurtin-Savard, Arthur. „Dose delivery uncertainty in photon beam radiotherapy“. Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22856.
Der volle Inhalt der QuelleWe have measured the degree of precision which exists in our institution by examining each step of the radiotherapy process on a cobalt unit and a 10 MV linear accelerator. Our study finds beam intensity uncertainties of $ pm$3.8% (one standard deviation) and beam positional uncertainties of $ pm$5.5 mm (one standard deviation). The effect of these uncertainties on the dose to the patient is illustrated for a typical case.