Zeitschriftenartikel zum Thema „Radio waves“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Radio waves.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Radio waves" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Hodkinson, Liam, und Elizabeth Stitt. „Radio Waves“. Index on Censorship 39, Nr. 2 (Juni 2010): 49–50. http://dx.doi.org/10.1177/03064220100390021001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Apple, Jacki, Regine Beyer und Richard Kostelanetz. „Making Radio Waves“. TDR (1988-) 36, Nr. 2 (1992): 7. http://dx.doi.org/10.2307/1146189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rakusen, Sam. „Making radio waves!“ Primary Teacher Update 2013, Nr. 18 (März 2013): 53. http://dx.doi.org/10.12968/prtu.2013.1.18.53b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

O'Sullivan, Mike. „Making radio waves“. A Life in the Day 10, Nr. 2 (Mai 2006): 6–8. http://dx.doi.org/10.1108/13666282200600013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dyson, Frances. „Radio Art in Waves“. Leonardo Music Journal 4 (1994): 9. http://dx.doi.org/10.2307/1513174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dixon, E. „Radio waves of progress“. Engineering & Technology 4, Nr. 5 (14.03.2009): 40–41. http://dx.doi.org/10.1049/et.2009.0506.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wait, J. R. „Propagation Of Radio Waves“. IEEE Antennas and Propagation Magazine 40, Nr. 2 (April 1998): 88. http://dx.doi.org/10.1109/map.1998.683546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Friebele, Elaine. „“Seeing” with radio waves“. Eos, Transactions American Geophysical Union 78, Nr. 30 (1997): 310. http://dx.doi.org/10.1029/97eo00203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Storey, L. R. O. „Natural VLF radio waves“. Planetary and Space Science 37, Nr. 8 (August 1989): 1021–22. http://dx.doi.org/10.1016/0032-0633(89)90058-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jones, Dyfrig. „Natural VLF Radio Waves“. Journal of Atmospheric and Terrestrial Physics 51, Nr. 2 (Februar 1989): 151. http://dx.doi.org/10.1016/0021-9169(89)90116-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Vasilev, Dragomir. „PROTECTION AGAINST THE ELECTROMAGNETIC STRENGTH OF THE RADIO WAVES IN COMMUNICATION RADIO NETWORKS“. Journal Scientific and Applied Research 22, Nr. 1 (03.03.2023): 50–55. http://dx.doi.org/10.46687/jsar.v22i1.340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper presents protection methods against Electromagnetic straight of the radio waves in communication radio networks. Examples of personal protective equipment for monitoring EMF when working near transmitting devices. Personal Monitor. When an electric current flows through the human body, cells and tissues prevent the movement of charged particles. The value of the resistance depends on the type and condition of the cells, the value and frequency of the applied voltage and the duration.
12

Rybarczyk, R. Joseph, Alexandria E. D. Federick, Oleksandr Kokhan, Ryan Luckay und Giovanna Scarel. „Probing electromagnetic wave energy with an in-series assembly of thermoelectric devices“. AIP Advances 12, Nr. 4 (01.04.2022): 045201. http://dx.doi.org/10.1063/5.0082749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We study the interaction of radio waves, microwaves, and infrared laser light of power P and period τ with a macroscopic thermoelectric (TEC) device-based detector and probe the energy Pτ as being the energy of these electromagnetic (EM) waves. Our detectors are in-series assemblies of TEC devices. We treat these detectors as equivalent to capacitors and/or inductors. The energy Pτ enables characterizing detector’s parameters, such as equivalent capacitance, inductance, resistance, responsivities, effective power, and efficiency. Through various scaling procedures, Pτ also aids in determining the power P of the EM waves. We compare the performance of our detectors with that of other TEC devices and with radio- and microwave-sensitive devices reported in the current literature, such as spin–orbit torque and spin–torque oscillator devices, heterojunction backward tunnel diodes, and Schottky diodes. We observe that the performance of our detectors is inferior. However, the order of magnitude of our detector’s parameters is in reasonable agreement with those of other TEC and non-TEC devices. We conclude that TEC devices can be used to detect radio waves and that Pτ effectively captures the energy of the EM waves. Considering Pτ as the EM wave’s energy offers a classical approach to the interaction of EM waves with matter in which photons are not involved. With the EM wave’s energy depending upon two variables (P and τ), a similar response could be produced by, e.g., radio waves and visible light, leading to interesting consequences that we briefly outline.
13

DeWALD, ERICH. „Taking to the Waves: Vietnamese society around the radio in the 1930s“. Modern Asian Studies 46, Nr. 1 (20.12.2011): 143–65. http://dx.doi.org/10.1017/s0026749x11000606.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractCompared with other public media, the colonial state showed a relative lack of interest in radio broadcasting, which developed in Vietnam in the 1930s under the aegis of two organizations based in Hanoi and Saigon, the Radio-Club de l'Indochine du Nord and Radio Saigon. These two groups were largely responsible for the new technology's expansion and for determining the content of broadcasting. The groups actively consulted the growing radio public, and that vocal audience played a role in determining not just what was heard but also in the social life of radio in late-colonial Vietnam. The content of radio was limited to a non-political domain and this fact, along with the particular position that many radios took in the social geography of towns and cities, lent itself to the easy entry of the radio into day-to-day life. Indeed, the early history of radio in Vietnam is remarkable for how rapidly it became commonplace, even banal.
14

Bokoyo Barandja, Vinci de Dieu, Bernard Zouma, Auguste Oscar Mackpayen, Martial Zoungrana, Issa Zerbo und Dieudonné Joseph Bathiebo. „Propagation of Electromagnetic Wave into an Illuminated Polysilicon PV Cell“. International Journal of Antennas and Propagation 2020 (30.01.2020): 1–7. http://dx.doi.org/10.1155/2020/6056712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The increasing cohabitation between telecommunication antennas generating electromagnetic waves and solar panels poses the problem of interaction between these radio waves and solar cells. In order to study the effect of radio waves on the performance of a polycrystalline silicon solar cell in a three-dimensional approach, it is necessary to assess the attenuation of the radio wave in the illuminated polysilicon grain and also to find the expressions of its components. This work investigated the attenuation of radio waves into a polycrystalline silicon grain by analyzing, firstly, the behaviour of the penetration length of the radio waves into the polysilicon grain and secondly, the behaviour of the attenuation factor. The propagation of the radio waves into the polycrystalline silicon grain can be considered without attenuation that can be neglected.
15

Lyubarskii, Yu E. „Generation of pulsar radio emission“. International Astronomical Union Colloquium 177 (2000): 387–88. http://dx.doi.org/10.1017/s0252921100060073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThe generation of radio emission from plasma waves excited by two-stream instability in pulsar magnetospheres is considered. Induced scattering transforms the excited longitudinal waves into waves that escape freely in the form of transverse electromagnetic waves. It is shown that the spectrum and the luminosity of the generated radio emission are compatible with those observed.
16

Ohtsuki, Tomoaki. „Monitoring Techniques with Radio Waves“. IEICE Communications Society Magazine 11, Nr. 1 (2017): 24–29. http://dx.doi.org/10.1587/bplus.11.24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lopez, Luciana. „Virtual Barcodes Use Radio Waves“. JALA: Journal of the Association for Laboratory Automation 3, Nr. 2 (Mai 1998): 13–15. http://dx.doi.org/10.1177/221106829800300205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The wrong additive in a specimen vial, for example, could not only give completely invalid results, it could also waste a given sample. While the automation, robotics, and electronics industries have been consistently helping laboratories improve identification and classification problems over the years, there has always been room for improvement. Now, however, a new technology stands poised to take identification solutions to a new level: radio frequency identification.
18

Lewis, Sian. „The power of radio waves“. Nature Reviews Neuroscience 16, Nr. 10 (16.09.2015): 578. http://dx.doi.org/10.1038/nrn4031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Osborne, Ian S. „Going quantum with radio waves“. Science 363, Nr. 6431 (07.03.2019): 1052.14–1054. http://dx.doi.org/10.1126/science.363.6431.1052-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chalmers, Matthew. „Radio waves measure body water“. Physics World 16, Nr. 3 (März 2003): 26–27. http://dx.doi.org/10.1088/2058-7058/16/3/38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Barclay, L. W. „The Propagation of Radio Waves“. Electronics and Power 32, Nr. 8 (1986): 610. http://dx.doi.org/10.1049/ep.1986.0365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Barr, R., D. Llanwyn Jones und C. J. Rodger. „ELF and VLF radio waves“. Journal of Atmospheric and Solar-Terrestrial Physics 62, Nr. 17-18 (November 2000): 1689–718. http://dx.doi.org/10.1016/s1364-6826(00)00121-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Adawi, I. „Centennial of Hertz’ radio waves“. American Journal of Physics 57, Nr. 2 (Februar 1989): 125–27. http://dx.doi.org/10.1119/1.16106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cairns, R. A., A. Kay und A. W. Taylor. „Absorption of radio-frequency waves“. Plasma Physics and Controlled Fusion 30, Nr. 1 (01.01.1988): 11–19. http://dx.doi.org/10.1088/0741-3335/30/1/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bates, D. R. „The propagation of Radio Waves“. Planetary and Space Science 34, Nr. 6 (Juni 1986): 573. http://dx.doi.org/10.1016/0032-0633(86)90097-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bougeret, J. L. „Radio waves in the heliosphere“. Advances in Space Research 13, Nr. 6 (Juni 1993): 191–203. http://dx.doi.org/10.1016/0273-1177(93)90409-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Pleukhov, A. N. „Nonreciprocity of radio waves in a meteor radio channel“. Radiophysics and Quantum Electronics 31, Nr. 5 (Mai 1988): 395–99. http://dx.doi.org/10.1007/bf01043601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Shoji, Eiichi. „Development and Performance of a Battery-Free Disaster Prevention Radio “HOOPRA” Using the Energy Harvested from Radio Waves“. Journal of Disaster Research 11, Nr. 3 (01.06.2016): 593–98. http://dx.doi.org/10.20965/jdr.2016.p0593.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A battery-free radio receiver, HOOPRA (<span class=”underline”>hoop</span> type <span class=”underline”>ra</span>dio), is proposed for acquiring information using middle wave AM radio broadcasting during unexpected power failures or disasters, with emphasis on wide coverage, immediate information acquisition, and energy saving. The HOOPRA utilizes middle waves for energy harvesting. As this radio is intended for use during disasters, the protection methods, receiving performance, and the applications of energy harvesting are reported in this paper. The HOOPRA is ring-shaped with a diameter of 20 cm when retracted, for portability and 60 cm when expanded, for usage and is lightweight (180 g). The HOOPRA works on the principle of a crystal radio but has an adequate receiving performance without an external antenna that is generally necessary for crystal radios and is portable. It could receive a radio broadcast within an area of radius 15 km from a transmitting station of the NHK Fukui Daiichi Broadcasting (JOFG, 5 kW). Further, the energy harvested from the middle waves utilizing the high sensitivity of the HOOPRA was found to light-up a white LED. In a field test with the HOOPRA, it was found that the receiving sensitivity was particularly enhanced near a tall building, probably owing to the diffraction effect of the radio waves. Use of this effect for enhancing the sensitivity of the battery-free radio is also explained.
29

Sharif, Radwan, Suleyman Gokhun Tanyer, Stephen Harrison, William Junor, Peter Driessen und Rodney Herring. „Locating Earth Disturbances Using the SDR Earth Imager“. Remote Sensing 14, Nr. 24 (18.12.2022): 6393. http://dx.doi.org/10.3390/rs14246393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The Radio Wave Phase Imager uses monitoring and recording concepts, such as Software Defined Radio (SDR), to image Earth’s atmosphere. The Long Wavelength Array (LWA), New Mexico Observatory is considered a high-resolution camera that obtains phase information about Earth and space disturbances; therefore, it was employed to capture radio signals reflected from Earth’s F ionization layer. Phase information reveals and measures the properties of waves that exist in the ionization layer. These waves represent terrestrial and solar Earth disturbances, such as power losses from power generating and distribution stations. Two LWA locations were used to capture the ionization layer waves, including University of New Mexico’s Long Wavelength Array’s LWA-1 and LWA-SV. Two locations of the measurements showed wavevector directions of disturbances, whereas the intersection of wavevectors determined the source of the disturbance. The research described here focused on measuring the ionization layer wave’s phase shifts, frequencies, and wavevectors. This novel approach is a significant contribution to determine the source of any disturbance.
30

Chernov, Gennady, und Valery Fomichev. „On the Issue of the Origin of Type II Solar Radio Bursts“. Astrophysical Journal 922, Nr. 1 (01.11.2021): 82. http://dx.doi.org/10.3847/1538-4357/ac1f32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Type II solar radio bursts are among the most powerful events in the solar radio emission in the meter wavelength range. It is generally accepted that the agents generating type II radio bursts are magnetohydrodynamic shock waves. But the relationship between the shock waves and the other manifestations of the large-scale disturbances in the solar atmosphere (coronal mass ejections, Morton waves, EUW waves) remains unclear. To clarify a problem, it is important to determine the conditions of generation of type II radio bursts. Here, the model of the radio source is based on the generation of radio emission within the front of the collisionless shock wave where the Buneman instability of plasma waves is developed. In the frame of this model, the Alfvén magnetic Mach number must exceed the critical value, and there is a strict restriction on the perpendicularity of the front. The model allows us to obtain the information about the parameters of the shock waves and the parameters of the medium by the parameters of type II bursts. The estimates, obtained in this paper for several events with the band splitting of the fundamental and harmonic emission bands of the type II bursts, confirm the necessary conditions of the model. In this case the registration of type II radio bursts is an indication of the propagation of shock waves in the solar atmosphere, and the absence of type II radio bursts is not an indication of the absence of shock waves. Such a situation should be taken into account when investigating the relationship between type II radio bursts and other manifestations of solar activity.
31

Mann, G., C. Vocks und A. Warmuth. „Type III radio bursts and excitation of Langmuir waves by energetic electrons“. Astronomy & Astrophysics 660 (April 2022): A91. http://dx.doi.org/10.1051/0004-6361/202142804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Context. Solar activity occurs not only in terms of the well-known 11-year Sun spot cycle but also in terms of short-lived phenomena as radio bursts. For instance, type III radio bursts are the most common phenomenon of this activity in the Sun’s radio radiation. In dynamic radio spectra, they appear as short-lived stripes of enhanced radio emission rapidly drifting from high to low frequencies. They are regarded as the radio signature of beams of energetic electrons travelling along magnetic field lines in the corona. The radio emission is thought to be plasma emission, that is to say the radio emission happens near the electron plasma frequency and/or its harmonics. Plasma emission means, that energetic electrons excite Langmuir waves, which convert into radio waves. Aims. Initially, energetic electrons are injected in a small region in the corona. Due to their spatio-temporal evolution, they develop a beam-like velocity distribution function (VDF), which is able to excite Langmuir waves. The aim of the paper is to study the spatio-temporal behaviour of the generation of Langmuir waves under coronal cirumstances and its effect on type III radio bursts. Methods. The generation of Langmuir waves is treated by means of the Maxwell-Vlasov equations. The results are discussed by employing plasma parameters usually found in the corona, for instance at the 150 MHz level. Results. The Langmuir waves associated with the type III bursts are not generated by a monoenergetic electron beam, but by a population of energetic electrons with a broad velocity distribution. Hence, the Langmuir waves are produced by different parts of the energetic electron population at different times and positions. Conclusions. In the case of type III bursts, the velocities derived from their drift rates in dynamic radio spectra are not the velocities of electrons, which generate the onset of the type III burst at a given frequency. That can lead to an apparent accelerated motion of the type III radio burst source.
32

Chimeh, Jahangir Dadkhah, Saeed Bashirzadeh Parapari und Seyed Mohmoud Mousavinejad. „Millimetric Waves Technologies: Opportunities and Challenges“. Key Engineering Materials 500 (Januar 2012): 263–68. http://dx.doi.org/10.4028/www.scientific.net/kem.500.263.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Providing an available wideband and better antenna beam forming are two good profits of millimeter wave (mmWave) technology. MmWave technology makes radio systems lighter and smaller and radars more precise. Today, commercial MmWave equipment work below 90GHz frequencies. MmWave radios work to transport Internat traffic in the backhaul of communication networks. There is a challenge in mmWave technology since the prices of equipment increases as the frequency increases. In this paper we study the applications of mmWave technology, its products, standards and compare it with other wireless technologies.
33

FABRIKANT, A. L., V. Yu TRAKHTENGERTS, Yu G. FEDOSEEV, V. O. RAPOPORT und V. A. ZINICHEV. „Radio-acoustic sounding of the troposphere using short radio waves“. International Journal of Remote Sensing 15, Nr. 2 (Januar 1994): 347–60. http://dx.doi.org/10.1080/01431169408954078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Sugimoto (Stray Cats), Norihiro. „Looking for radio waves with a simple radio wave detector“. Physics Teacher 49, Nr. 8 (November 2011): 514–15. http://dx.doi.org/10.1119/1.3651739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cartlidge, Edwin. „Radio offers view of gravitational waves“. Physics World 34, Nr. 2 (01.05.2021): 5. http://dx.doi.org/10.1088/2058-7058/34/02/05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Purwadi, A., und D. T. Utomo. „Radio waves-based landslide mitigation system“. IOP Conference Series: Earth and Environmental Science 672, Nr. 1 (01.03.2021): 012081. http://dx.doi.org/10.1088/1755-1315/672/1/012081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wilkie, Bill. „The Daintree Blockade: Making (radio) waves“. Queensland Review 28, Nr. 2 (Dezember 2021): 166–68. http://dx.doi.org/10.1017/qre.2022.13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Radio log 11/8/84D5 crossing creek under Timbertop’s tree … continues to fill the creek crossing … If he continues to fill it high enough the D10 should go through. Looks like a moonscape where the dozers are working.
38

SHINOHARA, Naoki. „Energy Harvesting from Radio Waves(Rectenna)“. Journal of the Surface Finishing Society of Japan 67, Nr. 7 (2016): 353–56. http://dx.doi.org/10.4139/sfj.67.353.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Aydin, Ulkem. „From radio waves to gamma rays“. Journal of Oral and Maxillofacial Radiology 1, Nr. 3 (2013): 93. http://dx.doi.org/10.4103/2321-3841.126676.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Bradley, Richard. „The many uses of radio waves“. Physics Today 72, Nr. 5 (Mai 2019): 60–61. http://dx.doi.org/10.1063/pt.3.4206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Warrington, E. M., und T. B. Jones. „Propagation of low-frequency radio waves“. IEE Proceedings - Microwaves, Antennas and Propagation 147, Nr. 1 (2000): 35. http://dx.doi.org/10.1049/ip-map:20000172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Peterson, I. „Detecting Jupiter's Tug on Radio Waves“. Science News 140, Nr. 19 (09.11.1991): 294. http://dx.doi.org/10.2307/3975910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hellemans, Alexander. „A new twist on radio waves“. IEEE Spectrum 49, Nr. 5 (Mai 2012): 16–18. http://dx.doi.org/10.1109/mspec.2012.6189563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Thibault, Ghislain. „Bolts and waves: representing radio signals“. Early Popular Visual Culture 16, Nr. 1 (02.01.2018): 39–56. http://dx.doi.org/10.1080/17460654.2018.1472621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kirschvink, Joseph L. „Radio waves zap the biomagnetic compass“. Nature 509, Nr. 7500 (07.05.2014): 296–97. http://dx.doi.org/10.1038/nature13334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gangadhara, R. T. „Reception of Radio Waves from Pulsars“. Symposium - International Astronomical Union 218 (2004): 343–44. http://dx.doi.org/10.1017/s0074180900181343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The beamed emission by relativistic sources moving along the magnetic dipolar field lines occurs in the direction of tangents to the field lines. To receive such a beamed radiation, the line of sight must align with the tangent within the beaming angle 1/γ, where γ is the particle Lorentz factor. By solving the viewing geometry, in an inclined and rotating dipole magnetic field, we show that at any given pulse phase the observer can receive the radiation only from specific altitudes. We find that the outer conal emission is received from higher altitudes than the inner conal components including the core. At any pulse phase, low frequency emission comes from the higher altitudes than higher-frequency emission. As an application of our model, we have used it to explain the emission heights of conal components in PSR B0329+54.
47

Page, Michael Le. „Radio waves slow roach body clocks“. New Scientist 243, Nr. 3249 (September 2019): 18. http://dx.doi.org/10.1016/s0262-4079(19)31804-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Battersby, Stephen. „Radio waves warn of imminent storm“. New Scientist 194, Nr. 2606 (Juni 2007): 16. http://dx.doi.org/10.1016/s0262-4079(07)61347-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Niemeyer, James E. „Controlling mouse metabolism by radio waves“. Lab Animal 45, Nr. 6 (20.05.2016): 198. http://dx.doi.org/10.1038/laban.1036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kish, Laszlo B., und Robert D. Nevels. „Twisted Radio Waves and Twisted Thermodynamics“. PLoS ONE 8, Nr. 2 (12.02.2013): e56086. http://dx.doi.org/10.1371/journal.pone.0056086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie