Zeitschriftenartikel zum Thema „Radio frequency“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Radio frequency.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Radio frequency" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

NECHIBVUTE, Action, Albert CHAWANDA, Nicholas TARUVINGA und Pearson LUHANGA. „Radio Frequency Energy Harvesting Sources“. Acta Electrotechnica et Informatica 17, Nr. 4 (01.12.2017): 19–27. http://dx.doi.org/10.15546/aeei-2017-0030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jayati, Ari Endang, Wahyu Minarti und Sri Heranurweni. „Analisa Teknis Penetapan Kanal Frekuensi Radio Untuk Lembaga Penyiaran Radio Komunitas Wilayah Kabupaten Batang“. Jurnal ELTIKOM 5, Nr. 2 (10.09.2021): 73–80. http://dx.doi.org/10.31961/eltikom.v5i2.361.

Der volle Inhalt der Quelle
Annotation:
The radio frequency spectrum constitutes a limited and strategic natural resource with high economic value, so it must be managed effectively and efficiently to obtain optimal benefits by observing national and international legal principles. Radio Community Broadcasting Institution uses limited frequency allocation in three channels, namely, in the frequency channels 202 (107.7 MHz), 203 (107.8 MHz), and 204 (107.9 MHz), with limited transmit power and area coverage. The problem in this research is the frequency overlap with other community radios in an area. The issue raised is whether it is possible to establish a new community radio in the Batang Regency area by paying attention to existing radios that have licenses in districts/cities that are in the area directly adjacent to Batang Regency by considering the limited allocation of radio frequency channels community, without the occurrence of radio frequency interference with other community radios. The purpose of this research is to solve these problems. It is necessary to have a policy in determining radio frequency users to get good quality radio broadcast reception. The method used is to analyze the frequency determination technique based on the interference analysis on other community broadcasters. By using the Radio Mobile Software for frequency repetition simulation, in this research, the results show that Batang FM Community Radio does not allow to get frequency channels for community radio operations. After all, it interferes with the Service Area of ​​Soneta FM Radio in Pekalongan City because it does not meet the requirements for determining the frequency channel = Eu> NF, namely the Nuisance Field (NF) value of 109.7 dB is greater than the Minimum Usable Field strength (Eu) of 66 dB. In comparison, Limpung FM Radio gets radio frequency on channel 203 (frequency 107.8 MHz) because it meets the requirements for determining the frequency channel = Eu> NF, namely the Minimum Usable Field strength (Eu) 66 dB greater than the Nuisance Field (NF) of 55.7 dB.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sackenheim, Maureen McDaniel. „Radio Frequency Ablation“. Journal of Diagnostic Medical Sonography 19, Nr. 2 (März 2003): 88–92. http://dx.doi.org/10.1177/8756479303251097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dondelinger, Robert M. „Radio Frequency Identification“. Biomedical Instrumentation & Technology 44, Nr. 1 (01.01.2010): 44–47. http://dx.doi.org/10.2345/0899-8205-44.1.44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wyld, David C. „Radio Frequency Identification“. Cornell Hospitality Quarterly 49, Nr. 2 (Mai 2008): 134–44. http://dx.doi.org/10.1177/1938965508316147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Scheck, Anne. „Radio Frequency Identification“. Emergency Medicine News 28, Nr. 3 (März 2006): 34–35. http://dx.doi.org/10.1097/01.eem.0000292061.54727.06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ekers, R. D., und J. F. Bell. „Radio Frequency Interference“. Symposium - International Astronomical Union 199 (2002): 498–505. http://dx.doi.org/10.1017/s0074180900169669.

Der volle Inhalt der Quelle
Annotation:
We describe the nature of the interference challenges facing radio astronomy in the next decade. These challenges will not be solved by regulation only, negotiation and mitigation will become vital. There is no silver bullet for mitigating against interference. A successful mitigation approach is most likely to be a hierarchical or progressive approach throughout the telescope and signal conditioning and processing systems. We summarise some of the approaches, including adaptive systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Westra, Bonnie L. „Radio Frequency Identification“. AJN, American Journal of Nursing 109, Nr. 3 (März 2009): 34–36. http://dx.doi.org/10.1097/01.naj.0000346925.67498.a4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rajaraman, V. „Radio frequency identification“. Resonance 22, Nr. 6 (Juni 2017): 549–75. http://dx.doi.org/10.1007/s12045-017-0498-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

., Manishkumar R. Solanki. „RADIO FREQUENCY IDENTIFICATION“. International Journal of Research in Engineering and Technology 06, Nr. 01 (25.01.2017): 129–33. http://dx.doi.org/10.15623/ijret.2017.0601024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Rao, Raghavendra. „RADIO FREQUENCY IDENTIFICATION“. International Journal of Innovative Research in Advanced Engineering 09, Nr. 12 (31.12.2022): 489–92. http://dx.doi.org/10.26562/ijirae.2022.v0912.05.

Der volle Inhalt der Quelle
Annotation:
Radio-frequency identification (RFID) is a technology that uses communication via electromagnetic waves to exchange data between a terminal and an electronic tag attached to an object, for the purpose of identification and tracking. Some tags can be read from several meters away and beyond the line of sight of the reader. Radio-frequency identification involves interrogators (also known as readers), and tags (also known as labels). Most RFID tags contain at least two parts. One is an integrated circuit for storing and processing information, modulating and demodulating a radio-frequency (RF) signal, and other specialized functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ayun, Moshe Ben, Arye Schwarzbaum, Seva Rosenberg, Monika Pinchas und Shmuel Sternklar. „Photonic radio frequency phase-shift amplification by radio frequency interferometry“. Optics Letters 40, Nr. 21 (19.10.2015): 4863. http://dx.doi.org/10.1364/ol.40.004863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mericli, Benjamin S., Ajay Ogirala, Peter J. Hawrylak und Marlin H. Mickle. „A Passive Radio Frequency Amplifier for Radio Frequency Identification Tags“. Journal of Low Power Electronics 7, Nr. 3 (01.08.2011): 453–58. http://dx.doi.org/10.1166/jolpe.2011.1139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Piccardo, Marco, Michele Tamagnone, Benedikt Schwarz, Paul Chevalier, Noah A. Rubin, Yongrui Wang, Christine A. Wang et al. „Radio frequency transmitter based on a laser frequency comb“. Proceedings of the National Academy of Sciences 116, Nr. 19 (24.04.2019): 9181–85. http://dx.doi.org/10.1073/pnas.1903534116.

Der volle Inhalt der Quelle
Annotation:
Since the days of Hertz, radio transmitters have evolved from rudimentary circuits emitting around 50 MHz to modern ubiquitous Wi-Fi devices operating at gigahertz radio bands. As wireless data traffic continues to increase, there is a need for new communication technologies capable of high-frequency operation for high-speed data transfer. Here, we give a proof of concept of a compact radio frequency transmitter based on a semiconductor laser frequency comb. In this laser, the beating among the coherent modes oscillating inside the cavity generates a radio frequency current, which couples to the electrodes of the device. We show that redesigning the top contact of the laser allows one to exploit the internal oscillatory current to drive a dipole antenna, which radiates into free space. In addition, direct modulation of the laser current permits encoding a signal in the radiated radio frequency carrier. Working in the opposite direction, the antenna can receive an external radio frequency signal, couple it to the active region, and injection lock the laser. These results pave the way for applications and functionality in optical frequency combs, such as wireless radio communication and wireless synchronization to a reference source.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Dallacasa, Daniele. „High Frequency Peakers“. Publications of the Astronomical Society of Australia 20, Nr. 1 (2003): 79–84. http://dx.doi.org/10.1071/as03005.

Der volle Inhalt der Quelle
Annotation:
AbstractThere is quite a clear anticorrelation between the intrinsic peak frequency and the overall radio source size in compact steep spectrum (CSS) and gigahertz peaked spectrum (GPS) radio sources. This feature is interpreted in terms of synchrotron self-absorption (although free–free absorption may play a role as well) of the radiation emitted by a small radio source which is growing within the inner region of the host galaxy. This leads to the hypothesis that these objects are young and that the radio source is still developing/expanding within the host galaxy itself.Very young radio sources must have the peak in their radio spectra occurring above a few tens of gigahertz, and for this reason they are termed high frequency peakers (HFPs). These newly born radio sources must be very rare given that they spend very little time in this stage. Ho = 100 km s−1 Mpc−1 and qo = 0.5 are used throughout this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Keenan, Jan. „Radio frequency catheter ablation“. Nursing Standard 9, Nr. 10 (30.11.1994): 50–51. http://dx.doi.org/10.7748/ns.9.10.50.s50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Truszkiewicz, Adrian, David Aebisher, Zuzanna Bober, Łukasz Ożóg und Dorota Bartusik-Aebisher. „Radio Frequency MRI coils“. European Journal of Clinical and Experimental Medicine 18, Nr. 1 (2020): 24–27. http://dx.doi.org/10.15584/ejcem.2020.1.5.

Der volle Inhalt der Quelle
Annotation:
Introduction. Magnetic Resonance Imaging (MRI) coils technology is a powerful improvement for clinical diagnostics. This includes opportunities for mathematical and physical research into coil design. Aim. Here we present the method applied to MRI coil array designs. Material and methods. Analysis of literature and self-research. Results. The coils that emit the radiofrequency pulses are designed similarly. As much as possible, they deliver the same strength of radiofrequency to all voxels within their imaging volume. Surface coils on the other hand are usually not embedded in cylindrical surfaces relatively close to the surface of the body. Conclusion. The presented here results relates to the art of magnetic resonance imaging (MRI) and RF coils design. It finds particular application of RF coils in conjunction with bore type MRI scanners.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

WANG, XIAOBIN. „RADIO FREQUENCY MAGNETIZATION NONVOLATILITY“. SPIN 02, Nr. 03 (September 2012): 1240009. http://dx.doi.org/10.1142/s2010324712400097.

Der volle Inhalt der Quelle
Annotation:
Long time magnetization thermal switching under small amplitude high frequency excitation is analyzed. Approaches based upon conventional time-dependent energy barrier are not sufficient to describe magnetization nonvolatility under GHz excitations. Methods based upon large angle nonlinear magnetization dynamics are developed for both coherent and noncoherent magnetization switching. This dynamic approach is not only important for fundamental understanding of magnetization dynamics under combined radio frequency excitations and thermal fluctuations, but also critical for practical design of emerging spintronic devices. When applied to spin torque random access memory read operations, as sensing current duration reaches nanosecond, dynamic approach gives a switching probability estimation orders of magnitude different from that obtained from conventional time-dependent energy barrier approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wilson, J. F. „Computer radio-frequency interference“. Electronics and Power 31, Nr. 2 (1985): 112. http://dx.doi.org/10.1049/ep.1985.0092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kaye, A., J. Jacquinot, P. Lallia und T. Wade. „Radio-Frequency Heating System“. Fusion Technology 11, Nr. 1 (Januar 1987): 203–34. http://dx.doi.org/10.13182/fst11-203-234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Schmidt, D. R., C. S. Yung und A. N. Cleland. „Nanoscale radio-frequency thermometry“. Applied Physics Letters 83, Nr. 5 (04.08.2003): 1002–4. http://dx.doi.org/10.1063/1.1597983.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jones, Alex K., Swapna Dontharaju, Shenchih Tung, Leo Mats, Peter J. Hawrylak, Raymond R. Hoare, James T. Cain und Marlin H. Mickle. „Radio frequency identification prototyping“. ACM Transactions on Design Automation of Electronic Systems 13, Nr. 2 (02.04.2008): 1–22. http://dx.doi.org/10.1145/1344418.1344425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Rundh, Bo. „Radio frequency identification (RFID)“. Marketing Intelligence & Planning 26, Nr. 1 (08.02.2008): 97–114. http://dx.doi.org/10.1108/02634500810847174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Roome, S. J. „Digital radio frequency memory“. Electronics & Communications Engineering Journal 2, Nr. 4 (1990): 147. http://dx.doi.org/10.1049/ecej:19900035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Padamsee, Hasan S. „Superconducting Radio-Frequency Cavities“. Annual Review of Nuclear and Particle Science 64, Nr. 1 (19.10.2014): 175–96. http://dx.doi.org/10.1146/annurev-nucl-102313-025612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Hingley, Martin, Susan Taylor und Charlotte Ellis. „Radio frequency identification tagging“. International Journal of Retail & Distribution Management 35, Nr. 10 (11.09.2007): 803–20. http://dx.doi.org/10.1108/09590550710820685.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Widmann, W. D., W. W. L. Glenn, L. Eisenberg und A. Mauro. „RADIO-FREQUENCY CARDIAC PACEMAKER*“. Annals of the New York Academy of Sciences 111, Nr. 3 (15.12.2006): 992–1006. http://dx.doi.org/10.1111/j.1749-6632.1964.tb53169.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kuzikov, S. V., A. V. Savilov und A. A. Vikharev. „Flying radio frequency undulator“. Applied Physics Letters 105, Nr. 3 (21.07.2014): 033504. http://dx.doi.org/10.1063/1.4890586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Margaryan, A., R. Carlini, R. Ent, N. Grigoryan, K. Gyunashyan, O. Hashimoto, K. Hovater et al. „Radio frequency picosecond phototube“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566, Nr. 2 (Oktober 2006): 321–26. http://dx.doi.org/10.1016/j.nima.2006.07.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tucker, Robert D., Chester E. Sievert, J. A. Vennes und Stephen E. Silvis. „Endoscopic radio frequency electrosurgery“. Gastrointestinal Endoscopy 36, Nr. 4 (Juli 1990): 412–13. http://dx.doi.org/10.1016/s0016-5107(90)71082-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Melski, Adam, Lars Thoroe und Matthias Schumann. „RFID – Radio Frequency Identification“. Informatik-Spektrum 31, Nr. 5 (05.08.2008): 469–73. http://dx.doi.org/10.1007/s00287-008-0267-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Roberts, C. M. „Radio frequency identification (RFID)“. Computers & Security 25, Nr. 1 (Februar 2006): 18–26. http://dx.doi.org/10.1016/j.cose.2005.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zeibig, Stefan. „Radio Frequency Identification (RFID)“. Controlling 18, Nr. 1 (2006): 51–52. http://dx.doi.org/10.15358/0935-0381-2006-1-51.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ivannikov, V. I., Yu D. Chernousov und I. V. Shebolaev. „Radio-frequency power compressor“. Technical Physics 44, Nr. 1 (Januar 1999): 108–9. http://dx.doi.org/10.1134/1.1259261.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Dobson, Tatyana, und Elle Todd. „Radio frequency identification technology“. Computer Law & Security Review 22, Nr. 4 (Januar 2006): 313–15. http://dx.doi.org/10.1016/j.clsr.2006.05.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wiltshire, M. C. K. „Radio frequency (RF) metamaterials“. physica status solidi (b) 244, Nr. 4 (April 2007): 1227–36. http://dx.doi.org/10.1002/pssb.200674511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Deng, Shouyun, Zhitao Huang, Xiang Wang und Guangquan Huang. „Radio Frequency Fingerprint Extraction Based on Multidimension Permutation Entropy“. International Journal of Antennas and Propagation 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/1538728.

Der volle Inhalt der Quelle
Annotation:
Radio frequency fingerprint (RF fingerprint) extraction is a technology that can identify the unique radio transmitter at the physical level, using only external feature measurements to match the feature library. RF fingerprint is the reflection of differences between hardware components of transmitters, and it contains rich nonlinear characteristics of internal components within transmitter. RF fingerprint technique has been widely applied to enhance the security of radio frequency communication. In this paper, we propose a new RF fingerprint method based on multidimension permutation entropy. We analyze the generation mechanism of RF fingerprint according to physical structure of radio transmitter. A signal acquisition system is designed to capture the signals to evaluate our method, where signals are generated from the same three Anykey AKDS700 radios. The proposed method can achieve higher classification accuracy than that of the other two steady-state methods, and its performance under different SNR is evaluated from experimental data. The results demonstrate the effectiveness of the proposal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Franklin, R. N. „The dual frequency radio-frequency sheath revisited“. Journal of Physics D: Applied Physics 36, Nr. 21 (15.10.2003): 2660–61. http://dx.doi.org/10.1088/0022-3727/36/21/010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Rani, Supriya. „Software Defined Radio in Radio Frequency Identification Applications“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VII (20.07.2021): 1887–92. http://dx.doi.org/10.22214/ijraset.2021.36778.

Der volle Inhalt der Quelle
Annotation:
RFID is an important aspect of today's age because it boosts efficiency and convenience. It is used for a lot of applications that prevent thefts of automobiles and merchandise. In current times there have been continuous transitions from analog to digital systems where software is being used to define the waveforms and analog signal processing is being replaced with digital signal processing. In this paper, we have done a thorough literature survey and understood the working of how software-defined radio is implemented in radio frequency identification for a better BER performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Fridman, P. „Radio frequency interference rejection in radio astronomy receivers“. Astronomical & Astrophysical Transactions 19, Nr. 3-4 (Dezember 2000): 625–45. http://dx.doi.org/10.1080/10556790008238609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Krupar, Vratislav, Oksana Kruparova, Adam Szabo, Lynn B. Wilson, Frantisek Nemec, Ondrej Santolik, Marc Pulupa, Karine Issautier, Stuart D. Bale und Milan Maksimovic. „Radial Variations in Solar Type III Radio Bursts“. Astrophysical Journal Letters 967, Nr. 2 (28.05.2024): L32. http://dx.doi.org/10.3847/2041-8213/ad4be7.

Der volle Inhalt der Quelle
Annotation:
Abstract Type III radio bursts are generated by electron beams accelerated at reconnection sites in the corona. This study, utilizing data from the Parker Solar Probe’s first 17 encounters, closely examines these bursts down to 13 solar radii. A focal point of our analysis is the near-radial alignment (within 5°) of the Parker Solar Probe, STEREO-A, and Wind spacecraft relative to the Sun. This alignment, facilitating simultaneous observations of 52 and 27 bursts by STEREO-A and Wind respectively, allows for a detailed differentiation of radial and longitudinal burst variations. Our observations reveal no significant radial variations in electron beam speeds, radio fluxes, or exponential decay times for events below 50 solar radii. In contrast, closer to the Sun we noted a decrease in beam speeds and radio fluxes. This suggests potential effects of radio beaming or alterations in radio source sizes in this region. Importantly, our results underscore the necessity of considering spacecraft distance in multispacecraft observations for accurate radio burst analysis. A critical threshold of 50 solar radii emerges, beyond which beaming effects and changes in beam speeds and radio fluxes become significant. Furthermore, the consistent decay times across varying radial distances point toward a stable trend extending from 13 solar radii into the inner heliosphere. Our statistical results provide valuable insights into the propagation mechanisms of type III radio bursts, particularly highlighting the role of scattering near the radio source when the frequency aligns with the local electron plasma frequency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kim, Yong-Jin, und Chang-Won Jung. „Design of mobile Radio Frequency Identification (m-RFID) antenna“. Journal of the Korea Academia-Industrial cooperation Society 10, Nr. 12 (31.12.2009): 3608–13. http://dx.doi.org/10.5762/kais.2009.10.12.3608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ando, A., A. Komuro, T. Matsuno, K. Tsumori und Y. Takeiri. „Radio frequency ion source operated with field effect transistor based radio frequency system“. Review of Scientific Instruments 81, Nr. 2 (Februar 2010): 02B107. http://dx.doi.org/10.1063/1.3279306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ko, Chien-Ho. „Accessibility of Radio Frequency Identification Technology in Facilities Maintenance“. Journal of Engineering, Project, and Production Management 7, Nr. 1 (31.01.2017): 45–53. http://dx.doi.org/10.32738/jeppm.201701.0006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Пензин, Максим, Maksim Penzin, Николай Ильин und Nikolay Ilyin. „Modeling of Doppler frequency shift in multipath radio channels“. Solar-Terrestrial Physics 2, Nr. 2 (10.08.2016): 66–76. http://dx.doi.org/10.12737/21000.

Der volle Inhalt der Quelle
Annotation:
We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase variation in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of variation in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

K.R., Sireesha, Chittoria R.K., Preethitha B., Elankumar S., Vinayak C., Kumaran M.S., Sudhanva H.K., Aggarwal A. und Saurabh G. „Application of Radio Frequency in the Management of Neurofibroma“. Indian Journal of Medical and Health Sciences 5, Nr. 1 (15.06.2018): 45–48. http://dx.doi.org/10.21088/ijmhs.2347.9981.5118.8.

Der volle Inhalt der Quelle
Annotation:
The usual practice of making skin incisions by a scalpel leads to more bleeding and time spent on achieving hemostasis. An alternative to this is to use electromagnetic radiation of high frequency in the form of radiofrequency to make skin inciosns that are more precise, accurate, associated with less bleeding and in turn less time consuming giving more defined result. Neurofibromatosis type 1 is associated with multiple swellings all over the body with surgical management required for aesthetic reasons or for symptomatic swellings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Gans, T., J. Schulze, D. O’Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe und M. M. Turner. „Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas“. Applied Physics Letters 89, Nr. 26 (25.12.2006): 261502. http://dx.doi.org/10.1063/1.2425044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kang, Jusung, Younghak Shin, Hyunku Lee, Jintae Park und Heungno Lee. „Radio Frequency Fingerprinting for Frequency Hopping Emitter Identification“. Applied Sciences 11, Nr. 22 (16.11.2021): 10812. http://dx.doi.org/10.3390/app112210812.

Der volle Inhalt der Quelle
Annotation:
In a frequency hopping spread spectrum (FHSS) network, the hopping pattern plays an important role in user authentication at the physical layer. However, recently, it has been possible to trace the hopping pattern through a blind estimation method for frequency hopping (FH) signals. If the hopping pattern can be reproduced, the attacker can imitate the FH signal and send the fake data to the FHSS system. To prevent this situation, a non-replicable authentication system that targets the physical layer of an FHSS network is required. In this study, a radio frequency fingerprinting-based emitter identification method targeting FH signals was proposed. A signal fingerprint (SF) was extracted and transformed into a spectrogram representing the time–frequency behavior of the SF. This spectrogram was trained on a deep inception network-based classifier, and an ensemble approach utilizing the multimodality of the SFs was applied. A detection algorithm was applied to the output vectors of the ensemble classifier for attacker detection. The results showed that the SF spectrogram can be effectively utilized to identify the emitter with 97% accuracy, and the output vectors of the classifier can be effectively utilized to detect the attacker with an area under the receiver operating characteristic curve of 0.99.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yuan, Yingjun, Zhitao Huang und Xiang Wang. „Detection of frequency‐hopping radio frequency‐switch transients“. Electronics Letters 50, Nr. 13 (Juni 2014): 956–57. http://dx.doi.org/10.1049/el.2013.3534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Alshaykh, Mohammed S., Jason D. McKinney und Andrew M. Weiner. „Radio-Frequency Signal Processing Using Optical Frequency Combs“. IEEE Photonics Technology Letters 31, Nr. 23 (01.12.2019): 1874–77. http://dx.doi.org/10.1109/lpt.2019.2946542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie