Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Radio frequency inductively-coupled plasma“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Radio frequency inductively-coupled plasma" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Radio frequency inductively-coupled plasma"
Boulos, Maher I. „THE INDUCTIVELY COUPLED RADIO FREQUENCY PLASMA“. High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 1, Nr. 1 (1997): 17–39. http://dx.doi.org/10.1615/hightempmatproc.v1.i1.20.
Der volle Inhalt der QuelleBoulos, M. I. „The inductively coupled R.F. (radio frequency) plasma“. Pure and Applied Chemistry 57, Nr. 9 (01.01.1985): 1321–52. http://dx.doi.org/10.1351/pac198557091321.
Der volle Inhalt der QuelleBera, K., B. Farouk und P. Vitello. „Inductively coupled radio frequency methane plasma simulation“. Journal of Physics D: Applied Physics 34, Nr. 10 (01.05.2001): 1479–90. http://dx.doi.org/10.1088/0022-3727/34/10/308.
Der volle Inhalt der QuelleAbdel-Rahman, M., V. Schulz-von der Gathen und T. Gans. „Transition phenomena in a radio-frequency inductively coupled plasma“. Journal of Physics D: Applied Physics 40, Nr. 6 (02.03.2007): 1678–83. http://dx.doi.org/10.1088/0022-3727/40/6/017.
Der volle Inhalt der QuelleStittsworth, J. A., und A. E. Wendt. „Striations in a radio frequency planar inductively coupled plasma“. IEEE Transactions on Plasma Science 24, Nr. 1 (1996): 125–26. http://dx.doi.org/10.1109/27.491744.
Der volle Inhalt der QuelleHua, Yue, Jian Song, Zeyu Hao, Gailing Zhang und Chunsheng Ren. „Characteristics of a dual-radio-frequency cylindrical inductively coupled plasma“. Contributions to Plasma Physics 59, Nr. 7 (04.02.2019): e201800029. http://dx.doi.org/10.1002/ctpp.201800029.
Der volle Inhalt der QuelleTuszewski, M. „Enhanced Radio Frequency Field Penetration in an Inductively Coupled Plasma“. Physical Review Letters 77, Nr. 7 (12.08.1996): 1286–89. http://dx.doi.org/10.1103/physrevlett.77.1286.
Der volle Inhalt der QuelleBozeman, S. P., D. A. Tucker, B. R. Stoner, J. T. Glass und W. M. Hooke. „Diamond deposition using a planar radio frequency inductively coupled plasma“. Applied Physics Letters 66, Nr. 26 (26.06.1995): 3579–81. http://dx.doi.org/10.1063/1.113793.
Der volle Inhalt der QuelleLafleur, T., und C. S. Corr. „Characterization of a radio-frequency inductively coupled electrothermal plasma thruster“. Journal of Applied Physics 130, Nr. 4 (28.07.2021): 043304. http://dx.doi.org/10.1063/5.0056124.
Der volle Inhalt der QuelleDewangan, Rakesh Kumar, Sangeeta B. Punjabi, N. K. Joshi, D. N. Barve, H. A. Mangalvedekar und B. K. Lande. „State-space modeling of the radio frequency inductively-coupled plasma generator“. Journal of Physics: Conference Series 208 (01.02.2010): 012056. http://dx.doi.org/10.1088/1742-6596/208/1/012056.
Der volle Inhalt der QuelleDissertationen zum Thema "Radio frequency inductively-coupled plasma"
Chen, Bing-Hung. „Inductively coupled radio-frequency discharges“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244566.
Der volle Inhalt der QuelleCanturk, Mehmet. „Modeling Of Helically Applied Current To The Inductively Coupled Radio Frequency Plasma Torch In Two Dimensions“. Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604691/index.pdf.
Der volle Inhalt der Quelle40 MHz). The applied power is coupled into the plasma inductively called inductively coupled plasma (ICP). RF ICP technique has achieved significance importance in a diversity of research and industrial applications for over the last threes decades. It is still required to undertake both theoretical and experimental research. In this work, RF ICP technique is applied on the torch modeling in 2D. Based on extended electromagnetic vector potential representation, an axisymmetric model in 2D is proposed for the calculations of the electromagnetic fields in an RF ICP torch. The influence of axial vector potential is included to the vector potential formulations. This is achieved by imposing a helical current carrying wire configuration. The corresponding governing equations are solved numerically by applying finite element method (FEM) using commercial partial differential equation solver (Flex PDE3). Based on this model, the plasma behavior and properties are examined in terms of plasma parameters. Besides, a comparative iii analysis is made between proposed model called helical configuration and the one currently available in the literature called circular configuration. This study shows relatively little difference between temperature fields predicted by two models. However, significant difference is observed between corresponding flows and electromagnetic fields. Especially, tangential flow which is observed in helical configuration vanishes in circular configuration. The proposed model offers an effective means of accounting for the variations of the helical coil geometry on the flow and temperature fields and achieving a better representation of the electromagnetic fields in the discharge. Finally, it is concluded that minimum number of turns (n = 2) yields significant difference between two models whereas, maximum allowable number of turns yield no distinctions on the results of two models in terms of azimuthally applied current. However, axial effect of current still exists but very small with respect to the result obtained with minimum number of turns.
Yang, Suidong. „Diagnostics and modelling of an inductively coupled RF low-pressure low-temperature plasma“. Thesis, n.p, 1998. http://oro.open.ac.uk/19841/.
Der volle Inhalt der QuelleRainey, Joe Seaburn. „Synthesis of fullerenes and metallic fullerenes by the utilization of an argon radio frequency inductively coupled plasma“. Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/27679.
Der volle Inhalt der QuelleWegner, Thomas [Verfasser]. „Comprehensive study of the discharge mode transition in inductively coupled radio frequency plasmas / Thomas Wegner“. Greifswald : Universitätsbibliothek Greifswald, 2016. http://d-nb.info/1122581629/34.
Der volle Inhalt der QuelleMiller, Charles William. „Surface characterization of inductively coupled radio frequency plasma treated glassy carbons by x-ray photoelectron spectroscopy and scanning electron microscopy /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266362335601.
Der volle Inhalt der QuelleMiller, Joseph. „Direct Multielemental Analysis of Solid Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectometry and Pulsed Radio Frequency Glow Discharge Mass Spectrometry“. TopSCHOLAR®, 2003. http://digitalcommons.wku.edu/theses/556.
Der volle Inhalt der QuelleDukovský, Daniel. „Depozice bioaktivních keramických vrstev pomocí technologie RF-ICP“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442600.
Der volle Inhalt der QuelleLiang, Dong Cuan. „Development and characterization of atmospheric pressure radio frequency capacitively coupled plasmas for analytical spectroscopy“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/30590.
Der volle Inhalt der QuelleScience, Faculty of
Chemistry, Department of
Graduate
O'Neill, Colm Philip. „Numerical simulations of plasma dynamics and chemistry in dual radio-frequency and pulse driven capacitively coupled atmosphere pressure plasmas“. Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.696157.
Der volle Inhalt der QuelleBücher zum Thema "Radio frequency inductively-coupled plasma"
Gao, Guangning. Modelling and diagnostics of atmospheric argon radio frequency inductively coupled plasma. 2004.
Den vollen Inhalt der Quelle findenShan, Yanguang. A stochastic spray model for radio frequency inductively coupled plasmas. 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Radio frequency inductively-coupled plasma"
Boulos, Maher I., Pierre Fauchais und Emil Pfender. „Inductively Coupled Radio Frequency Plasma Torches“. In Handbook of Thermal Plasmas, 1–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12183-3_17-1.
Der volle Inhalt der QuelleJayapalan, Kanesh Kumar, Oi Hoong Chin und Chiow San Wong. „Radio Frequency Planar Inductively Coupled Plasma: Fundamentals and Applications“. In Plasma Science and Technology for Emerging Economies, 527–91. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4217-1_10.
Der volle Inhalt der QuelleBerezhnoi, S., I. Kaganovich, A. Bogaerts und R. Gijbels. „Modelling of Radio Frequency Capacitively Coupled Plasma at Intermediate Pressures“. In Advanced Technologies Based on Wave and Beam Generated Plasmas, 525–26. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_48.
Der volle Inhalt der QuelleRossnagel, Stevi. „Ionization by radio frequency inductively coupled plasma“. In Ionized physical vapor deposition, 37–66. Elsevier, 2000. http://dx.doi.org/10.1016/s1079-4050(00)80005-8.
Der volle Inhalt der QuelleCoppa, Gianni, Antonio D'Angola, Ivo Furno, Davide Bernardi, Philippe Guittienne, Alan Howling, Remy Jacquier und Renato Zaffina. „Radio frequency inductively coupled discharges in thermal plasmas“. In Plasma Modeling Methods and Applications. IOP Publishing, 2016. http://dx.doi.org/10.1088/978-0-7503-1200-4ch10.
Der volle Inhalt der QuelleOhtsu, Yasunori. „Physics of High-Density Radio Frequency Capacitively Coupled Plasma with Various Electrodes and Its Applications“. In Plasma Science and Technology - Basic Fundamentals and Modern Applications. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.78387.
Der volle Inhalt der QuelleDeicke, Frank, Hagen Grtz und Wolf-Joachim Fischer. „Virtual Optimisation and Verification of Inductively Coupled Transponder Systems“. In Radio Frequency Identification Fundamentals and Applications Design Methods and Solutions. InTech, 2010. http://dx.doi.org/10.5772/7980.
Der volle Inhalt der QuelleGriffiths, C. M., R. Bøe und R. A. and Hodkinson. „Frequency and Sequency Analyses of Petrophysical Log Data and Inductively Coupled Argon Plasma Analysis of Sediments in the Lau Basin“. In Proceedings of the Ocean Drilling Program, 135 Scientific Results. Ocean Drilling Program, 1994. http://dx.doi.org/10.2973/odp.proc.sr.135.105.1994.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Radio frequency inductively-coupled plasma"
Wendt, Amy E. „The physics of inductively coupled plasma sources“. In The twelfth topical conference on radio frequency power in plasmas. AIP, 1997. http://dx.doi.org/10.1063/1.53368.
Der volle Inhalt der QuelleKato, Takahiro, Yuma Iwasaki, Takayasu Fujino und Ikkoh Funaki. „Thrust Measurement of Radio Frequency Inductively Coupled Plasma Thruster“. In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1613.
Der volle Inhalt der QuelleAkiyama, Kaho, und Takayasu Fujino. „Study on Nozzle Shape of Radio-Frequency Inductively Coupled Plasma Thruster“. In AIAA Propulsion and Energy 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-3381.
Der volle Inhalt der QuelleRazzak, M. A., S. Takamura, Y. Uesugi und N. Ohno. „Measurement of electromagnetic field in a radio frequency inductively coupled plasma at atmospheric pressure“. In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1706960.
Der volle Inhalt der QuelleKemaneci, Efe H., Emile Carbone, Sara Rahimi, Manuel Jimenez-Diaz, Jan van Dijk, Gerrit Kroesen und Jean-Paul Booth. „Global model of inductively coupled radio-frequency Cl2 plasma: Dissociation, excitation and power modulation“. In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6634959.
Der volle Inhalt der QuelleXiong, H. B., L. L. Zheng, J. Margolies und S. Sampath. „Numerical Simulation of Radio Frequency Induction Plasma Spray Processing“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59895.
Der volle Inhalt der QuelleYamauchi, Mioko, und Takayasu Fujino. „Comparison between Experiments and Numerical Simulations of a Radio-frequency Inductively Coupled Plasma Thruster“. In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3903.
Der volle Inhalt der QuelleNg, K. H., C. S. Wong, S. L. Yap, S. N. Gan, Swee-Ping Chia, Kurunathan Ratnavelu und Muhamad Rasat Muhamad. „Deposition Of Materials Using A Simple Planar Coil Radio Frequency Inductively Coupled Plasma System“. In FRONTIERS IN PHYSICS: 3rd International Meeting. AIP, 2009. http://dx.doi.org/10.1063/1.3192288.
Der volle Inhalt der QuelleGushchin, Mikhail E., Sergey V. Korobkov, Alexander V. Kostrov, Askold V. Strikovsky, Vladimir I. Gundorin, Alexander G. Galka, Dmitry A. Odzerikho, Volodymyr Bobkov und Jean-Marie Noterdaeme. „Basic plasma physics experiments and modeling of space phenomena on a large inductively coupled magnetoplasma device“. In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273837.
Der volle Inhalt der QuelleHuang, Ta-Yen, Yueh-Heng Li, Ming-Hsueh Shen und Yi-Chien Chen. „Development of a Miniature Radio-Frequency Ion Engine with Inductively Coupled Plasma (ICP) Source for Cube Satellite Propulsion“. In AIAA Propulsion and Energy 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-3417.
Der volle Inhalt der Quelle