Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Radiations ionisantes naturelles“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Radiations ionisantes naturelles" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Radiations ionisantes naturelles"
Berlivet, J. „Association entre les radiations ionisantes naturelles et les tumeurs cérébrales de l’enfant“. Revue d'Épidémiologie et de Santé Publique 65, Nr. 2 (April 2017): 171. http://dx.doi.org/10.1016/j.respe.2017.01.107.
Der volle Inhalt der QuelleBerlivet, J., D. Hémon, É. Cléro, G. Ielsch, D. Laurier, S. Guissou, B. Lacour, J. Clavel und S. Goujon. „Exposition résidentielle aux radiations ionisantes naturelles et risque de tumeurs cérébrales chez l’enfant - France 2000–2012“. Revue d'Épidémiologie et de Santé Publique 68 (März 2020): S8—S9. http://dx.doi.org/10.1016/j.respe.2020.01.016.
Der volle Inhalt der QuelleDissertationen zum Thema "Radiations ionisantes naturelles"
Lampe, Nathanael. „De l’impact à long terme des radiations ionisantes sur les systèmes vivants“. Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC011/document.
Der volle Inhalt der QuelleAll life on earth has adapted to an environment where there is a small, persistent, radiation background interacting with cells. Unlike evaluating the clearly harmful effects of high radiation doses, understanding the effects of this low persistent radiation dose on living systems is incredibly difficult. We have attempted to study whether background radiation is an important factor in evolution by conducting identical evolution experiments with Escherichia coli in the Clermont-Ferrand Particle Physics Laboratory and the Modane Underground Laboratory. Despite a 7.3 fold difference in the rate of interactions between the radiation background and cells between the two environments, no significant difference was found in the competitive fitness of the cell populations grown at each location. Using simulations, we showed that the rate at which ionising radiation interacts with cells is one hundred times less frequent than E. coli’s mutation rate in our experimental conditions, supporting the contention that natural radiation has no strong evolutionary effect. To further support this conclusion, we developed a mechanistic simulation for DNA damage as part of the Geant4-DNA project. Using this application, we irradiated a model of an E. coli genome, showing that for electron irradiation > 10 keV, the double strand break yield can be reasonably estimated to be between 0.006 – 0.010 DSB Gy-1 Mbp-1, depending upon the modelling of radical scavenging. This is in agreement with experimental data, further highlighting the small role natural ionising radation plays as a cause of mutations
Demoury, Claire. „Variations géographiques de l’incidence des leucémies de l’enfant et association avec l’exposition aux radiations ionisantes d’origine naturelle“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T027/document.
Der volle Inhalt der QuelleIonizing radiation due to medical or accidental exposure to high doses is an established risk factor for leukemia in humans. However, the evidence of a risk associated with exposure to ionizing radiation at lower levels usually encountered in the environment remains to be demonstrated. Our work aims to evaluate the hypothesis of the existence of an association between natural background ionizing radiation and the risk of childhood leukemia (CL) using observations made in France.Leukemia cases included in this study are all the CL recorded in the National Registry of Childhood Hematological Malignancies, an exhaustive repository of all cases of patients younger than 15 years old in France over the studied period.First step was the study of the spatial distribution of the incidence of CL at the level of the 1,916 Living Zone (LZ) defined by INSEE. Cluster detection methods have been used on 7,675 cases of CL diagnosed during the period 1990-2006 to identify areas potentially associated with a higher risk of acute childhood leukemia. The study did not show any spatial heterogeneity of incidence of CL during the period at LZ level. However, some spatial clusters were highlighted in specific places and times. Although the levels of significance of these clusters do not strongly support the existence of risk factors, localized clusters can show a slight impact of risk factors shared across LZ, including contextual environmental exposures.To test the hypothesis of the existence of an association between environmental exposure to ionizing radiation of natural origin and incidence of childhood leukemia, an incidence study based on 9,056 cases of CL for the period 1990-2009 was conducted. This study was complemented by a record-based cases-controls study based on the 2,763 cases of CL recorded over the 2002-2007 period and a control set of 30,000 subjects constituting a representative sample of the contemporary French pediatric population. In this approach, localizations of cases and controls and exposure identifications were geocoded and compared to the status cases vs control population.Data of exposure to natural background radiation were produced by the IRSN (Institute for Radiological Protection and Nuclear Safety). Mapping of the “potential radon exhalation emitted by the ground” and a national sampling of 10,843 measurement points located in dwellings were used to estimate residential exposure to radon at a level of granularity of cities and houses. Exposure to terrestrial gamma and cosmic rays was estimated by zone d’emploi based on a set of more than 28,000 environmental measurements in approximately 1,000 sites covering whole France, and by the IRSN national campaign data. Our study did not show any association of childhood leukemia with exposures to natural background radiation estimated nor at diagnosis nor cumulatively during childhood. However it had a good power to highlight the risks expected from current models of risk (UNSCEAR) built from studies on the observed high doses risks. If this work does not support the hypothesis that there is an association between exposure to ionizing radiation from natural sources observed and the incidence of childhood leukemia which may be directly observable at the epidemiologic level, this question remains important enough and not investigated enough to merit further complementary studies in countries where it has not been investigated
Roche, Nicolas J.-H. „Caractérisation et modélisation de l'influence des effets cumulés de l'environnement spatial sur le niveau de vulnérabilité de systèmes spatiaux soumis aux effets transitoires naturels ou issus d'une explosion nucléaire“. Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20108.
Der volle Inhalt der QuelleThe natural radiative space environment is composed by numerously particles in a very large energy spectrum. From an electronics component point of view, it is possible to distinguish cumulative effects and so-called Analog Single Event Transient effects (ASET). Cumulative effects correspond to continuous deterioration of the electrical parameters of the component, due to a low dose rate energy deposition (Total Ionizing Dose: TID) throughout the space mission. ASETs are caused by a single energetic particle crossing a sensitive area of the component inducing a transient voltage pulse that occurs at the output of the application. During ground testing, both effects are studied separately but happen simultaneously in flight. As a result a synergy effect, induced by the combination of the low dose rate energy deposition and the sudden occurrence of an ASET in the device previously irradiated, occurs. A study of dose-ASET synergistic effects is proposed using an accelerated irradiation test technique known as Dose Rate Switching method (DRS) tacking into account the concern of the Enhanced Low Dose Rate Sensitivity (ELDRS). A High Level Model is developed using circuit analysis to predict the synergy effect observed on a three stages operational amplifier. To predict synergy effect, the TID effect is taken into account by varying the model parameters following a variation law deduced from the degradation of the supply current which recorded during usual industrial TID testing. Finally, the Transient Radiation Effects on Electronics (TREE) phenomena induced by a Very High Dose Rate X-ray pulse environment and the dose-TREE synergy effect are then investigated using an X-ray flash facility. The classical ASETs methodology analysis can explain the shapes of transients observed