Dissertationen zum Thema „Radiation therapy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Radiation therapy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Crosbie, Jeffrey. „Synchrotron microbeam radiation therapy“. Monash University. Faculty of Science. School of Physics, 2008. http://arrow.monash.edu.au/hdl/1959.1/64948.
Der volle Inhalt der QuelleSkiöld, Sara. „Radiation induced biomarkers of individual sensitivity to radiation therapy“. Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97123.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Bergh, Alphonsus Cornelis Maria van den. „Radiation therapy in pituitary adenomas“. [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.
Der volle Inhalt der QuelleFlejmer, Anna M. „Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications“. Doctoral thesis, Linköpings universitet, Avdelningen för kliniska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127370.
Der volle Inhalt der QuelleFitzgerald, Rhys J. „A comparison of volumetric modulated arc therapy (VMAT), intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3DCRT) for stereotactic ablative radiation therapy (SABR) for early stage lung cancer“. Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/99826/4/Rhys_Fitzgerald_Thesis.pdf.
Der volle Inhalt der QuelleEngelbeen, Céline. „The segmentation problem in radiation therapy“. Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210107.
Der volle Inhalt der QuelleMathematically, the segmentation problem amounts to decomposing a given nonnegative integer matrix A into a nonnegative integer linear combination of some binary matrices. These matrices have to respect the consecutive ones property. In clinical applications several constraints may arise that reduce the set of binary matrices which respect the consecutive ones property that we can use. We study some of them, as the interleaf distance constraint, the interleaf motion constraint, the tongue-and-groove constraint and the minimum separation constraint.
We consider here different versions of the segmentation problem with different objective functions. Hence we deal with the beam-on time problem in order to minimize the total time during which the patient is irradiated. We study this problem under the interleaf distance and the interleaf motion constraints. We consider as well this last problem under the tongue-and-groove constraint in the binary case. We also take into account the cardinality and the lex-min problem. Finally, we present some results for the approximation problem.
/Le problème de segmentation intervient lors de l'élaboration d'un plan de radiothérapie. Après que le médecin ait localisé la tumeur ainsi que les organes se situant à proximité de celle-ci, il doit aussi déterminer les différents dosages qui devront être délivrés. Il détermine alors une borne inférieure sur le dosage que doit recevoir la tumeur afin d'en avoir un contrôle satisfaisant, et des bornes supérieures sur les dosages des différents organes situés dans le champ. Afin de respecter au mieux ces bornes, le plan de radiothérapie doit être préparé de manière minutieuse. Nous nous intéressons à l'une des étapes à réaliser lors de la détermination de ce plan: l'étape de segmentation.
Mathématiquement, cette étape consiste à décomposer une matrice entière et positive donnée en une combinaison positive entière linéaire de certaines matrices binaires. Ces matrices binaires doivent satisfaire la contrainte des uns consécutifs (cette contrainte impose que les uns de ces matrices soient regroupés en un seul bloc sur chaque ligne). Dans les applications cliniques, certaines contraintes supplémentaires peuvent restreindre l'ensemble des matrices binaires ayant les uns consécutifs (matrices 1C) que l'on peut utiliser. Nous en avons étudié certaines d'entre elles comme celle de la contrainte de chariots, la contrainte d'interdiciton de chevauchements, la contrainte tongue-and-groove et la contrainte de séparation minimum.
Le premier problème auquel nous nous intéressons est de trouver une décomposition de la matrice donnée qui minimise la somme des coefficients des matrices binaires. Nous avons développé des algorithmes polynomiaux qui résolvent ce problème sous la contrainte de chariots et/ou la contrainte d'interdiction de chevauchements. De plus, nous avons pu déterminer que, si la matrice donnée est une matrice binaire, on peut trouver en temps polynomial une telle décomposition sous la contrainte tongue-and-groove.
Afin de diminuer le temps de la séance de radiothérapie, il peut être désirable de minimiser le nombre de matrices 1C utilisées dans la décomposition (en ayant pris soin de préalablement minimiser la somme des coefficients ou non). Nous faisons une étude de ce problème dans différents cas particuliers (la matrice donnée n'est constituée que d'une colonne, ou d'une ligne, ou la plus grande entrée de celle-ci est bornée par une constante). Nous présentons de nouvelles bornes inférieures sur le nombre de matrices 1C ainsi que de nouvelles heuristiques.
Finalement, nous terminons par étudier le cas où l'ensemble des matrices 1C ne nous permet pas de décomposer exactement la matrice donnée. Le but est alors de touver une matrice décomposable qui soit aussi proche que possible de la matrice donnée. Après avoir examiné certains cas polynomiaux nous prouvons que le cas général est difficile à approximer avec une erreur additive de O(mn) où m et n représentent les dimensions de la matrice donnée.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Chan, Kin Wa (Karl), University of Western Sydney, of Science Technology and Environment College und School of Computing and Information Technology. „Lateral electron disequilibrium in radiation therapy“. THESIS_CSTE_CIT_Chan_K.xml, 2002. http://handle.uws.edu.au:8081/1959.7/538.
Der volle Inhalt der QuelleMaster of Science (Hons)
Chan, Kin Wa. „Lateral electron disequilibrium in radiation therapy /“. View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040507.164802/index.html.
Der volle Inhalt der Quelle"A thesis submitted in fulfillment of the requirements for the Degree of Master of Science (Honours) in Physics at the University of Western Sydney" "September 2002" "Kin Wa (Karl) Chan of Medical Physics Department of Westmead Hospital and the University of Western Sydney"-- t.p. Bibliography: leaves 100-105.
Ranggård, Nina. „Optimizing Conformity inIntensity Modulated Radiation Therapy“. Thesis, KTH, Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147356.
Der volle Inhalt der QuelleChan, Timothy Ching-Yee. „Optimization under uncertainty in radiation therapy“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40302.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 175-182).
In the context of patient care for life-threatening illnesses, the presence of uncertainty may compromise the quality of a treatment. In this thesis, we investigate robust approaches to managing uncertainty in radiation therapy treatments for cancer. In the first part of the thesis, we study the effect of breathing motion uncertainty on intensity-modulated radiation therapy treatments of a lung tumor. We construct a robust framework that generalizes current mathematical programming formulations that account for motion. This framework gives insight into the trade-off between sparing the healthy tissues and ensuring that the tumor receives sufficient dose. With this trade-off in mind, we show that our robust solution outperforms a nominal (no uncertainty) solution and a margin (worst-case) solution on a clinical case. Next, we perform an in-depth study into the structure of different intensity maps that were witnessed in the first part of the thesis. We consider parameterized intensity maps and investigate their ability to deliver a sufficient dose to the tumor in the presence of motion that follows a Gaussian distribution. We characterize the structure of optimal intensity maps in terms of certain conditions on the problem parameters.
(cont.) Finally, in the last part of the thesis, we study intensity-modulated proton therapy under uncertainty in the location of maximum dose deposited by the beamlets of radiation. We provide a robust formulation for the optimization of proton-based treatments and show that it outperforms traditional formulations in the face of uncertainty. In our computational experiments, we see evidence that optimal robust solutions use the physical characteristics of the proton beam to create dose distributions that are far less sensitive to the underlying uncertainty.
by Timothy Ching-Yee Chan.
Ph.D.
Brauer-Krisch, E. „Experimental dosimetry for Microbeam Radiation Therapy“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1357933/.
Der volle Inhalt der QuelleBalsells, Alex T. „Computational Methods for Radiation Therapy Planning“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1557844457085534.
Der volle Inhalt der QuelleDial, Christian W. „Adaptive Radiation Therapy for Lung Cancer“. VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3579.
Der volle Inhalt der QuelleScott, Susan Lynne Pipes. „Enhancing radiation therapy for prostate cancer /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleMueller, Marco. „Direct tumour tracking during radiation therapy“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29450.
Der volle Inhalt der QuelleFan, Qiyong. „Emission guided radiation therapy: a feasibility study“. Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37277.
Der volle Inhalt der QuelleWong, Tony Po Yin, und tony wong@swedish org. „Improving Treatment Dose Accuracy in Radiation Therapy“. RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080104.144139.
Der volle Inhalt der QuelleChapman, Alison. „Dosimetric verification of intensity modulated radiation therapy“. Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20061026.141700/index.html.
Der volle Inhalt der QuelleFan, Qiyong. „Emission guided radiation therapy: a feasibility study“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52153.
Der volle Inhalt der QuelleCutter, David J. „Radiation-related cardiovascular disease following cancer therapy“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:3f02ca87-530d-4ee7-9382-4b457bec62b5.
Der volle Inhalt der QuelleAndersson, Björn. „Mathematical Optimization of Radiation Therapy Goal Fulfillment“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325396.
Der volle Inhalt der QuelleShin, Naomi. „Modeling secondary cancer risk following paediatric radiotherapy: a comparison of intensity modulated proton therapy and photon therapy“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106431.
Der volle Inhalt der QuelleUn avantage connu de la radiothérapie par protons est la réduction de la dose reçue par les tissus normaux et sains par rapport aux traitements en photons. Cette réduction de dose peut résulter en une diminution des effets aigus et tardifs de la radiothérapie. Dans cet ouvrage, les plans de protonthérapie ont été créés pour des patients ayant été traités par radiothérapie en photons. Les plans de protonthérapie conformationnelle avec modulation d'intensité (PCMI) ont été conçus par planification inverse dans le système de planification de traitement Eclipse de Varian de façon à ce que le faisceau de protons en balayage produise la même dose de prescription que plan en photons, tout en tenant compte des efficacités biologiques relatives des deux types de radiation. Les plans en photons et en protons ont ensuite été comparés en termes de conformité de la dose, d'homogénéité de la dose, de volumes recevant 2 et 5 Gy, de dose intégrale, de dose aux tissus normaux et de risque de cancer secondaire. Le risque relatif de cancer secondaire a été determiné par la méthode décrite par Nguyen et al. en applicant une relation linéaire entre la dose intégrale et le risque relatif de cancer secondaire. Une deuxième approche employée dans cet ouvrage utilise le concept de dose équivalente à un organe de Schneider et al. pour décrire la dose dans le corps et par la suite calculer l'excès de risque absolu et le risque cumulatif de cancers solides dans le corps. Les traitements comparés, soit en photons et en protons, ont démontré une conformité et une homogénéité de la dose similaires dans le volume cible. Toutefois, les plans de PCMI réduisent la dose intégrale et diminuent les volumes du corps recevant une faible dose. Globalement, le risque d'induction d'un cancer secondaire est plus faible pour les plans de PCMI que pour les plans équivalents en photons avec une réduction de ~36% en utilisant le modèle de dose intégrale et ~50% en utilisant le modèle de dose équivalente à un organe.
Dou, Xin Wu Xiaodong. „New algorithms for target delineation and radiation delivery in intensity-modulated radiation therapy“. [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/354.
Der volle Inhalt der QuelleDou, Xin. „New algorithms for target delineation and radiation delivery in intensity-modulated radiation therapy“. Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/354.
Der volle Inhalt der QuelleBäck, Sven Å J. „Implementation of MRI gel dosimetry in radiation therapy“. Malmö : Lund : Malmö University Hospital ; Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/68945079.html.
Der volle Inhalt der QuelleOlofsson, Lennart. „Energy and intensity modulated radiation therapy with electrons“. Doctoral thesis, Umeå : Department of Radiation Sciences, Radiation Physics, Umeå University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-491.
Der volle Inhalt der QuelleCarlsson, Fredrik. „Utilizing Problem Structure in Optimization of Radiation Therapy“. Doctoral thesis, Stockholm : Matematik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4689.
Der volle Inhalt der QuelleTesta, Mauro. „Charged particle therapy, ion range verification, prompt radiation“. Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00566188.
Der volle Inhalt der QuelleJain, Suneil. „Gold nanoparticles as novel sensitisers for radiation therapy“. Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534722.
Der volle Inhalt der QuelleRamakrishnan, Jagdish. „Dynamic optimization of fractionation schedules in radiation therapy“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82181.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 145-156).
In this thesis, we investigate the improvement in treatment effectiveness when dynamically optimizing the fractionation scheme in radiation therapy. In the first part of the thesis, we consider delivering a different dose each day depending on the observed patient anatomy. Given that a fixed prescribed dose must be delivered to the tumor over the course of the treatment, such an approach results in a lower cumulative dose to a radio-sensitive organ-at-risk when compared to that resulting from standard fractionation. We use the dynamic programming algorithm to solve the problem exactly. Next, we suggest an approach which optimizes the fraction size and selects a treatment plan from a plan library. Computational results from patient datasets indicate this approach is beneficial. In the second part of the thesis, we analyze the effect of repopulation on the optimal fractionation scheme. A dynamic programming framework is developed to determine an optimal fractionation scheme based on a model of cell kill due to radiation and tumor growth in between treatment days. We prove that the optimal dose fractions are increasing over time. We find that the presence of accelerated tumor repopulation suggests larger dose fractions later in the treatment to compensate for the increased tumor proliferation.
by Jagdish Ramakrishnan.
Ph.D.
Watkins, W. Tyler. „Optimization of Radiation Therapy in Time-Dependent Anatomy“. VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3069.
Der volle Inhalt der QuelleZhou, Jining. „ORGAN MOTION AND IMAGE GUIDANCE IN RADIATION THERAPY“. VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1681.
Der volle Inhalt der QuelleShao, Wei. „Improving functional avoidance radiation therapy by image registration“. Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7031.
Der volle Inhalt der QuelleReynard, Dimitri. „Development of Accurate Dosimetry for Microbeam Radiation Therapy“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS038/document.
Der volle Inhalt der QuelleThe use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT) or Microbeam Radiation Therapy. For these irradiation fields, dosimetric errors have increased compared to conventional beams. The main reason for this is that no standard dosimetric protocol exists. In the case of MRT, a dedicated protocol has been developed based on a broad beam measurement with a PinPoint chamber combined with the multiplication with an OF to predict the peak dose. This protocol is handy in the sense that it allows to overcome the lack of spatial resolution of the detector and anyway move forward with pre-clinical procedures by enabling the calculation of the peak dose. The valley dose is then retrieved using the PVDR also based on MC calculations.Over the last decade, detectors with high spatial resolution allowing measurements at the micron scale became available. Among them, the PTW microDiamond detector, HDV2 films combined with the appropriate read-out system and FNTD. Measurements performed at the ID 17 biomedical beamline with these three dosimeters highlighted discrepancies between the MC simulated values of OF and PVDR and experimental data which addresses an issue regarding the validity of the current dosimetry protocol. Moreover, it has been highlighted that OF and PVDR values differ between the different MC codes which represents a problem when associated with the dosimetry protocol. Obtaining reliable values of OF and PVDR for both experimental and numerical measurement represents the challenge of this work.In this work, the discrepancies between the MC simulations and measured datas are assigned to a lack of details in the MC simulations and to the fact that detector specific characteristics can influence the measurement. A series of MC simulation is developed to quantify each of these effects. The major drawback of such study is the simulation time, so tricks are used to speed up the calculation and nevertheless keep the results as accurate as possible
Peet, Samuel. „Out-of-field dosimetry in contemporary radiation therapy“. Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/234916/1/9325565_samuel_peet_thesis.pdf.
Der volle Inhalt der QuelleCapuccini, Jenny <1976>. „Short course accelerated radiation therapy in palliative care“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amsdottorato.unibo.it/8411/1/CAPUCCINI_JENNY_TESI.pdf.
Der volle Inhalt der QuelleAnstett, Anne. „Approach of combined cancer gene therapy and radiation : Response of promoters to ionizing radiation“. Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/ANSTETT_Anne_2005.pdf.
Der volle Inhalt der QuelleGene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angiogenesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are untransformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy. The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA microarray technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inducibility of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer
Nilsson, Johan. „Accurate description of heterogeneous tumors for biologically optimized radiation therapy“. Doctoral thesis, Stockholm : Division of medical radiation physics, Department of oncology-pathology, Stockholm University and Karolinska Institutet, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-311.
Der volle Inhalt der QuelleTanny, Sean M. „Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement“. University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1449853114.
Der volle Inhalt der QuelleTangboonduangjit, Puangpen. „Intensity-modulated radiation therapy dose maps the matchline effect /“. Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060724.095712/index.html.
Der volle Inhalt der QuelleFredriksson, Albin. „Robust optimization of radiation therapy accounting for geometric uncertainty“. Doctoral thesis, KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122262.
Der volle Inhalt der QuelleQC 20130516
Wiklund, Kristin. „Modeling of dose and sensitivity heterogeneities in radiation therapy“. Doctoral thesis, Stockholms universitet, Fysikum, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-74719.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
Alrushoud, Abdullah A. „Polymer gel dosimetry in radiation therapy using computed tomography“. Thesis, University of Surrey, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616921.
Der volle Inhalt der QuelleOlsson, Henrik. „Utilizing the Degrees of Freedom in Radiation Therapy Optimization“. Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214566.
Der volle Inhalt der QuelleUtvecklingen av avancerad mjukvara för strålningsterapi är en del av de senaste decenniernas framsteg inom cancerbehandling. Genom att optimera stråldosen som ges till varje patient ökar sannolikheten att behandlingen lyckas. Utvecklingen av matematiska optimeringsmetoder, som används för att producera så bra strålningsplaner som möjligt, är därför av högsta vikt. När man producerar strålningsplaner för VMAT (Volumetric Modulated Arc Therapy) idag, utnyttjas inte alla frihetsgrader. Möjligheten att rotera patientbritsen och kollimatorn för att leverera en bättre strålningsdos till patienten lämnas ute. För att kunna utnyttja dessa frigetsgrader fullt ut krävs utveckling av metoder som kan förutspå hur bra olika strålningstrajektorier är. Då det finns ett väldigt stort antal möjliga strålningstrajektorier måste dessa metoder vara tidseffektiva. Under detta exjobb har en heuristisk metod för att hitta bra VMAT-trajektorier för patienter med flera hjärnmetastaser utvecklats. I metoden discretiseras sfären runt patientens huvud i ett antal strålningsriktningar. Från varje strålningsriktning produceras en projektion av patientens anatomi. Baserat på de relativa positionerna av hjärnmetastaserna och de organ man vill skydda tilldelas varje strålningsriktning ett straff. Genom att binda samman intilliggande strålningsriktningar kan sedan VMAT-trajektorier produceras, och varje VMAT-trajektorie tilldelas ett straff baserat på straffen hos de strålningsriktningar som bundits samman för att bilda trajektorien. Straffet som tilldelats en trajektorie används sedan som en indikator för hur bra trajektorien är för VMAT-behandling. Den heuristiska metoden är testad i fyra olika patientfall. I tre av patientfallen ger metoden bra resultat. I sin helhet tyder resultaten på att det är möjligt att förutsäga hur bra en VMAT-trajektorie är för VMAT-behandling, genom att från ett par punkter längst trajektorien titta på de relativa positionerna av metastaserna och de organ som man vill skydda. Dock gör det låga antalet av testfall att inga statisktiskt säkerställda slutsatser kan dras.
Schneider, Tim. „Advancing the generation of proton minibeams for radiation therapy“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP069.
Der volle Inhalt der QuelleDespite major advances over the last decades, the dose tolerance of normal tissue continues to be a central problem in radiation therapy, limiting for example the effective treatment of hypoxic tumours and high-grade gliomas. Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy, combining the improved ballistics of protons with the enhanced tissue sparing potential of submillimetric, spatially fractionated beams (minibeams), that has already demonstrated its ability to significantly improve the therapeutic index for brain cancers in rats. In contrast to conventional proton therapy which uses comparatively large beam diameters of five millimetres to several centimetres, minibeams require beam sizes of less than 1 mm which are challenging to create in a clinical context. So far, every implementation of pMBRT at clinically relevant beam energies could only be achieved with the help of mechanical collimators (metal blocks with thin slits or holes). However, this method is inefficient, inflexible and creates high levels of unwanted secondary particles. The optimal approach may therefore be the generation of minibeams through magnetic focussing.This thesis investigates how magnetically focussed proton minibeams can be realised in a clinical context. Starting from the computer model of a modern pencil beam scanning nozzle (the term "nozzle" describes the final elements of a clinical beamline), it could be shown that current nozzles will not be suitable for this task, since their large dimensions and the presence of too much air in the beam path make it impossible to focus the beam down to the required sizes. Instead, an optimised nozzle design has been developed and evaluated with clinical beam models. It could be demonstrated that this design allows the generation of proton minibeams through magnetic focussing and that the new nozzle can be used with already existing technology. Moreover, a Monte Carlo study was performed to compare and quantify the differences between magnetically focussed minibeams and mechanically collimated minibeams.Finally, as the second aspect of this thesis, helium ions were evaluated as a potential alternative to protons for minibeam radiation therapy. It could be shown that helium ions could present a good compromise exhibiting many of the dosimetric advantages of heavier ions without the risks related to normal tissue toxicities
Zachariah, Elizabeth. „Spatio-Temporal Modeling Of Anatomic Motion For Radiation Therapy“. VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3972.
Der volle Inhalt der QuellePolston, Gregory K. „A dosimetric model for small-field electron radiation therapy“. Muncie, Ind. : Ball State University, 2008. http://cardinalscholar.bsu.edu/366.
Der volle Inhalt der QuelleKumar, Arvind. „Novel methods for intensity modulated radiation therapy treatment planning“. [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011543.
Der volle Inhalt der QuelleZhang, Tianfang. „Machine learning multicriteria optimization in radiation therapy treatment planning“. Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257509.
Der volle Inhalt der QuelleInom strålterapiplanering har den senaste forskningen använt maskininlärning baserat på historiskt levererade planer för att automatisera den process i vilken kliniskt acceptabla planer produceras. Jämfört med traditionella angreppssätt, såsom upprepad optimering av en viktad målfunktion eller flermålsoptimering (MCO), har automatiska planeringsmetoder generellt sett fördelarna av lägre beräkningstider och minimal användarinteraktion, men saknar däremot flexibiliteten hos allmänna ramverk som exempelvis MCO. Maskininlärningsmetoder kan vara speciellt känsliga för avvikelser i dosprediktionssteget på grund av särskilda egenskaper hos de optimeringsfunktioner som vanligtvis används för att återskapa dosfördelningar, och lider dessutom av problemet att det inte finns något allmängiltigt orsakssamband mellan prediktionsnoggrannhet och kvalitet hos optimerad plan. I detta arbete presenterar vi ett sätt att förena idéer från maskininlärningsbaserade planeringsmetoder med det väletablerade MCO-ramverket. Mer precist kan vi, givet förkunskaper i form av antingen en tidigare optimerad plan eller en uppsättning av historiskt levererade kliniska planer, automatiskt generera Paretooptimala planer som täcker en dosregion motsvarande uppnåeliga såväl som kliniskt acceptabla planer. I det förra fallet görs detta genom att introducera dos--volym-bivillkor; i det senare fallet görs detta genom att anpassa en gaussisk blandningsmodell med viktade data med förväntning--maximering-algoritmen, modifiera den med exponentiell lutning och sedan använda speciellt utvecklade optimeringsfunktioner för att ta hänsyn till prediktionsosäkerheter.Numeriska resultat för konceptuell demonstration erhålls för ett fall av prostatacancer varvid behandlingen levererades med volymetriskt modulerad bågterapi, där det visas att metoderna utvecklade i detta arbete är framgångsrika i att automatiskt generera Paretooptimala planer med tillfredsställande kvalitet och variation medan kliniskt irrelevanta dosregioner utesluts. I fallet då historiska planer används som förkunskap är beräkningstiderna markant kortare än för konventionell MCO.
Wadlow, Philip James. „MATERIAL SELECTION AND TESTING FOR A RADIATION THERAPY CATHETER“. DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1661.
Der volle Inhalt der Quelle