Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Radiation therapy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Radiation therapy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Radiation therapy"
Jingu, K., R. Umezawa, T. Yamamoto, Y. Ishikawa, N. Takahashi, K. Takeda, Y. Suzuki, S. Teramura und S. Omata. „Radiation Therapy“. Nihon Kikan Shokudoka Gakkai Kaiho 72, Nr. 2 (10.04.2021): 84–87. http://dx.doi.org/10.2468/jbes.72.84.
Der volle Inhalt der QuelleArticle, Editorial. „RADIATION THERAPY“. Diagnostic radiology and radiotherapy, Nr. 1 (26.04.2018): 133–37. http://dx.doi.org/10.22328/2079-5343-2018-9-1-133-137.
Der volle Inhalt der QuelleStrohl, Roberta Anne. „Radiation Therapy“. Nursing Clinics of North America 25, Nr. 2 (Juni 1990): 309–29. http://dx.doi.org/10.1016/s0029-6465(22)02928-0.
Der volle Inhalt der QuelleHaylock, Pamela J. „Radiation Therapy“. American Journal of Nursing 87, Nr. 11 (November 1987): 1441. http://dx.doi.org/10.2307/3425900.
Der volle Inhalt der QuelleFrassica, Deborah A., Sarah Thurman und James Welsh. „RADIATION THERAPY“. Orthopedic Clinics of North America 31, Nr. 4 (Oktober 2000): 557–66. http://dx.doi.org/10.1016/s0030-5898(05)70175-9.
Der volle Inhalt der QuelleShipley, William U. „Radiation Therapy“. Journal of Urology 147, Nr. 3 Part 2 (März 1992): 929–30. http://dx.doi.org/10.1016/s0022-5347(17)37425-6.
Der volle Inhalt der QuelleCharkravarti, A., M. Wang, I. Robins, A. Guha, W. Curren, D. Brachman, C. Schultz et al. „Radiation Therapy“. Neuro-Oncology 12, Supplement 4 (21.10.2010): iv105—iv112. http://dx.doi.org/10.1093/neuonc/noq116.s15.
Der volle Inhalt der QuelleBehera, M. K., A. Sharma, S. Dutta, S. Sharma, P. K. Julka, G. K. Rath, W. J. Kil et al. „RADIATION THERAPY“. Neuro-Oncology 13, suppl 3 (21.10.2011): iii127—iii133. http://dx.doi.org/10.1093/neuonc/nor160.
Der volle Inhalt der QuelleAnwar, M., J. Lupo, A. Molinaro, J. Clarke, N. Butowski, M. Prados, S. Chang et al. „RADIATION THERAPY“. Neuro-Oncology 15, suppl 3 (01.11.2013): iii178—iii188. http://dx.doi.org/10.1093/neuonc/not187.
Der volle Inhalt der QuelleJeremic, Branislav. „Radiation therapy“. Hematology/Oncology Clinics of North America 18, Nr. 1 (Februar 2004): 1–12. http://dx.doi.org/10.1016/s0889-8588(03)00143-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Radiation therapy"
Crosbie, Jeffrey. „Synchrotron microbeam radiation therapy“. Monash University. Faculty of Science. School of Physics, 2008. http://arrow.monash.edu.au/hdl/1959.1/64948.
Der volle Inhalt der QuelleSkiöld, Sara. „Radiation induced biomarkers of individual sensitivity to radiation therapy“. Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97123.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Bergh, Alphonsus Cornelis Maria van den. „Radiation therapy in pituitary adenomas“. [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.
Der volle Inhalt der QuelleFlejmer, Anna M. „Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications“. Doctoral thesis, Linköpings universitet, Avdelningen för kliniska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127370.
Der volle Inhalt der QuelleFitzgerald, Rhys J. „A comparison of volumetric modulated arc therapy (VMAT), intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3DCRT) for stereotactic ablative radiation therapy (SABR) for early stage lung cancer“. Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/99826/4/Rhys_Fitzgerald_Thesis.pdf.
Der volle Inhalt der QuelleEngelbeen, Céline. „The segmentation problem in radiation therapy“. Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210107.
Der volle Inhalt der QuelleMathematically, the segmentation problem amounts to decomposing a given nonnegative integer matrix A into a nonnegative integer linear combination of some binary matrices. These matrices have to respect the consecutive ones property. In clinical applications several constraints may arise that reduce the set of binary matrices which respect the consecutive ones property that we can use. We study some of them, as the interleaf distance constraint, the interleaf motion constraint, the tongue-and-groove constraint and the minimum separation constraint.
We consider here different versions of the segmentation problem with different objective functions. Hence we deal with the beam-on time problem in order to minimize the total time during which the patient is irradiated. We study this problem under the interleaf distance and the interleaf motion constraints. We consider as well this last problem under the tongue-and-groove constraint in the binary case. We also take into account the cardinality and the lex-min problem. Finally, we present some results for the approximation problem.
/Le problème de segmentation intervient lors de l'élaboration d'un plan de radiothérapie. Après que le médecin ait localisé la tumeur ainsi que les organes se situant à proximité de celle-ci, il doit aussi déterminer les différents dosages qui devront être délivrés. Il détermine alors une borne inférieure sur le dosage que doit recevoir la tumeur afin d'en avoir un contrôle satisfaisant, et des bornes supérieures sur les dosages des différents organes situés dans le champ. Afin de respecter au mieux ces bornes, le plan de radiothérapie doit être préparé de manière minutieuse. Nous nous intéressons à l'une des étapes à réaliser lors de la détermination de ce plan: l'étape de segmentation.
Mathématiquement, cette étape consiste à décomposer une matrice entière et positive donnée en une combinaison positive entière linéaire de certaines matrices binaires. Ces matrices binaires doivent satisfaire la contrainte des uns consécutifs (cette contrainte impose que les uns de ces matrices soient regroupés en un seul bloc sur chaque ligne). Dans les applications cliniques, certaines contraintes supplémentaires peuvent restreindre l'ensemble des matrices binaires ayant les uns consécutifs (matrices 1C) que l'on peut utiliser. Nous en avons étudié certaines d'entre elles comme celle de la contrainte de chariots, la contrainte d'interdiciton de chevauchements, la contrainte tongue-and-groove et la contrainte de séparation minimum.
Le premier problème auquel nous nous intéressons est de trouver une décomposition de la matrice donnée qui minimise la somme des coefficients des matrices binaires. Nous avons développé des algorithmes polynomiaux qui résolvent ce problème sous la contrainte de chariots et/ou la contrainte d'interdiction de chevauchements. De plus, nous avons pu déterminer que, si la matrice donnée est une matrice binaire, on peut trouver en temps polynomial une telle décomposition sous la contrainte tongue-and-groove.
Afin de diminuer le temps de la séance de radiothérapie, il peut être désirable de minimiser le nombre de matrices 1C utilisées dans la décomposition (en ayant pris soin de préalablement minimiser la somme des coefficients ou non). Nous faisons une étude de ce problème dans différents cas particuliers (la matrice donnée n'est constituée que d'une colonne, ou d'une ligne, ou la plus grande entrée de celle-ci est bornée par une constante). Nous présentons de nouvelles bornes inférieures sur le nombre de matrices 1C ainsi que de nouvelles heuristiques.
Finalement, nous terminons par étudier le cas où l'ensemble des matrices 1C ne nous permet pas de décomposer exactement la matrice donnée. Le but est alors de touver une matrice décomposable qui soit aussi proche que possible de la matrice donnée. Après avoir examiné certains cas polynomiaux nous prouvons que le cas général est difficile à approximer avec une erreur additive de O(mn) où m et n représentent les dimensions de la matrice donnée.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Chan, Kin Wa (Karl), University of Western Sydney, of Science Technology and Environment College und School of Computing and Information Technology. „Lateral electron disequilibrium in radiation therapy“. THESIS_CSTE_CIT_Chan_K.xml, 2002. http://handle.uws.edu.au:8081/1959.7/538.
Der volle Inhalt der QuelleMaster of Science (Hons)
Chan, Kin Wa. „Lateral electron disequilibrium in radiation therapy /“. View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040507.164802/index.html.
Der volle Inhalt der Quelle"A thesis submitted in fulfillment of the requirements for the Degree of Master of Science (Honours) in Physics at the University of Western Sydney" "September 2002" "Kin Wa (Karl) Chan of Medical Physics Department of Westmead Hospital and the University of Western Sydney"-- t.p. Bibliography: leaves 100-105.
Ranggård, Nina. „Optimizing Conformity inIntensity Modulated Radiation Therapy“. Thesis, KTH, Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147356.
Der volle Inhalt der QuelleChan, Timothy Ching-Yee. „Optimization under uncertainty in radiation therapy“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40302.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 175-182).
In the context of patient care for life-threatening illnesses, the presence of uncertainty may compromise the quality of a treatment. In this thesis, we investigate robust approaches to managing uncertainty in radiation therapy treatments for cancer. In the first part of the thesis, we study the effect of breathing motion uncertainty on intensity-modulated radiation therapy treatments of a lung tumor. We construct a robust framework that generalizes current mathematical programming formulations that account for motion. This framework gives insight into the trade-off between sparing the healthy tissues and ensuring that the tumor receives sufficient dose. With this trade-off in mind, we show that our robust solution outperforms a nominal (no uncertainty) solution and a margin (worst-case) solution on a clinical case. Next, we perform an in-depth study into the structure of different intensity maps that were witnessed in the first part of the thesis. We consider parameterized intensity maps and investigate their ability to deliver a sufficient dose to the tumor in the presence of motion that follows a Gaussian distribution. We characterize the structure of optimal intensity maps in terms of certain conditions on the problem parameters.
(cont.) Finally, in the last part of the thesis, we study intensity-modulated proton therapy under uncertainty in the location of maximum dose deposited by the beamlets of radiation. We provide a robust formulation for the optimization of proton-based treatments and show that it outperforms traditional formulations in the face of uncertainty. In our computational experiments, we see evidence that optimal robust solutions use the physical characteristics of the proton beam to create dose distributions that are far less sensitive to the underlying uncertainty.
by Timothy Ching-Yee Chan.
Ph.D.
Bücher zum Thema "Radiation therapy"
Smith, Alfred R., Hrsg. Radiation Therapy Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03107-0.
Der volle Inhalt der QuelleViswanathan, Akila N., Christian Kirisits, Beth E. Erickson und Richard Pötter, Hrsg. Gynecologic Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68958-4.
Der volle Inhalt der QuelleSauer, Rolf, Hrsg. Interventional Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84163-7.
Der volle Inhalt der QuelleBentel, Gunilla C. Radiation therapy planning. 2. Aufl. New York, NY: McGraw-Hill, 1996.
Den vollen Inhalt der Quelle findenD, Altschuler M., und Smith Alfred R, Hrsg. Radiation therapy physics. Berlin: Springer-Verlag, 1995.
Den vollen Inhalt der Quelle findenS, Ibbott Geoffrey, und Hendee Eric G, Hrsg. Radiation therapy physics. 3. Aufl. Hoboken, N.J: J. Wiley, 2005.
Den vollen Inhalt der Quelle findenS, Ibbott Geoffrey, Hrsg. Radiation therapy physics. 2. Aufl. St. Louis: Mosby, 1996.
Den vollen Inhalt der Quelle findenBentel, Gunilla Carleson. Radiation therapy planning. 2. Aufl. New York: McGraw-Hill, Health Professions Division, 1996.
Den vollen Inhalt der Quelle findenR, Dobelbower Ralph, und Abe Mitsuyuki 1932-, Hrsg. Intraoperative radiation therapy. Boca Raton, Fla: CRC Press, 1989.
Den vollen Inhalt der Quelle findenCukier, Daniel. Coping with radiation therapy. Los Angeles: Lowell House, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Radiation therapy"
Rimner, Andreas. „Radiation Therapy“. In Caring for Patients with Mesothelioma: Principles and Guidelines, 47–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96244-3_4.
Der volle Inhalt der QuelleMolina, Kristine M., Kristine M. Molina, Heather Honoré Goltz, Marc A. Kowalkouski, Stacey L. Hart, David Latini, J. Rick Turner et al. „Radiation Therapy“. In Encyclopedia of Behavioral Medicine, 1614. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_101431.
Der volle Inhalt der QuelleIto, Yoshinori. „Radiation Therapy“. In Esophageal Squamous Cell Carcinoma, 227–49. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54977-2_13.
Der volle Inhalt der QuelleBush, R. S. „Radiation Therapy“. In Ovarian Cancer, 74–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69695-4_7.
Der volle Inhalt der QuelleBarrett, A., und S. S. Donaldson. „Radiation Therapy“. In Cancer in Children, 42–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84722-6_5.
Der volle Inhalt der QuelleRobbins, Jared R., John Maclou Longo und Michael Straza. „Radiation Therapy“. In Cancer Regional Therapy, 461–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28891-4_37.
Der volle Inhalt der QuelleBahr, Benjamin, Boris Lemmer und Rina Piccolo. „Radiation Therapy“. In Quirky Quarks, 264–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49509-4_64.
Der volle Inhalt der QuelleBryant, Curtis, und William M. Mendenhall. „Radiation Therapy“. In Juvenile Angiofibroma, 225–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45343-9_18.
Der volle Inhalt der QuelleGoltra, Peter S. „Radiation Therapy“. In Medcin, 690. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2286-6_85.
Der volle Inhalt der QuelleBambace, Santa, Giuseppe Bove, Stefania Carbone, Samantha Cornacchia, Angelo Errico, Maria Cristina Frassanito, Giovanna Lovino, Anna Maria Grazia Pastore und Girolamo Spagnoletti. „Radiation Therapy“. In Imaging Gliomas After Treatment, 23–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Radiation therapy"
Laissue, Jean A., Nadia Lyubimova, Hans-Peter Wagner, David W. Archer, Daniel N. Slatkin, Marco Di Michiel, Christian Nemoz et al. „Microbeam radiation therapy“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von H. Bradford Barber und Hans Roehrig. SPIE, 1999. http://dx.doi.org/10.1117/12.368185.
Der volle Inhalt der QuelleMason, Suzie, Yiannis Roussakis, Rongxiao Zhang, Geoff Heyes, Gareth Webster, Stuart Green, Brian Pogue und Hamid Dehghani. „Cherenkov Radiation Portal Imaging during Photon Radiotherapy“. In Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.41.
Der volle Inhalt der Quelle„MODELING INTERNAL RADIATION THERAPY“. In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003172202280233.
Der volle Inhalt der QuelleChirkova, I. N., M. N. Petkevich und T. S. Chikova. „MATRIX IONIZING RADIATION DETECTORS USED IN RADIATION THERAPY“. In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-230-233.
Der volle Inhalt der QuelleGarcia, J. F., K. Kaushal und K. Melamed. „Hyperacute Radiation Recall Pneumonitis Induced by Radiation Therapy“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5709.
Der volle Inhalt der QuelleParzyan, G. R., und A. V. Geinits. „Treatment of acute pancreatitis with mexidol and low-intensity laser radiation“. In Low-Level Laser Therapy, herausgegeben von Tatiana I. Solovieva. SPIE, 2001. http://dx.doi.org/10.1117/12.425521.
Der volle Inhalt der QuelleSuárez, Martín. „Conformal Radiation Therapy, Treatment Planning“. In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2002. http://dx.doi.org/10.1063/1.1512036.
Der volle Inhalt der QuelleZhou, Jie, Chaohui Zhang, Dong Zhou und Hui Zhang. „Multileaf collimator for radiation therapy“. In International Conference on Medical Engineering and Bioinformatics. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/meb140521.
Der volle Inhalt der QuelleSuárez, Martín, Luis Manuel Montaño Zentina und Gerardo Herrera Corral. „Conformai Radiation Therapy, Treatment Planning“. In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3682844.
Der volle Inhalt der QuelleMaleki, T., und B. Ziaie. „Microsystems technology in radiation therapy“. In 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iembs.2010.5626340.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Radiation therapy"
Garsa, Adam, Julie K. Jang, Sangita Baxi, Christine Chen, Olamigoke Akinniranye, Owen Hall, Jody Larkin, Aneesa Motala, Sydne Newberry und Susanne Hempel. Radiation Therapy for Brain Metasases. Agency for Healthcare Research and Quality (AHRQ), Juni 2021. http://dx.doi.org/10.23970/ahrqepccer242.
Der volle Inhalt der QuelleMacdonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612050.
Der volle Inhalt der QuelleHalligan, John, Stephanie Ninneman und Michael Brown. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada539130.
Der volle Inhalt der QuelleMacDonald, Dusten, und Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567268.
Der volle Inhalt der QuelleMacdonald, Dusten, und Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590464.
Der volle Inhalt der QuelleMacDonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada554234.
Der volle Inhalt der QuelleSkelly, Andrea C., Eric Chang, Jessica Bordley, Erika D. Brodt, Shelley Selph, Rongwei Fu, Rebecca Holmes et al. Radiation Therapy for Metastatic Bone Disease: Effectiveness and Harms. Agency for Healthcare Research and Quality (AHRQ), August 2023. http://dx.doi.org/10.23970/ahrqepccer265.
Der volle Inhalt der QuelleIpe, Nisy E. Neutron Measurements for Intensity Modulated Radiation Therapy. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/763769.
Der volle Inhalt der QuelleO'Brien, Robert. Radiation Therapy and Dosing Material Transport Methodology. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1755852.
Der volle Inhalt der QuelleSkliar, Mikhail. Oxygenation-Enhanced Radiation Therapy of Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada558802.
Der volle Inhalt der Quelle