Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Radiation dosimetry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Radiation dosimetry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Radiation dosimetry"
Bhatt, B. C., und M. S. Kulkarni. „Thermoluminescent Phosphors for Radiation Dosimetry“. Defect and Diffusion Forum 347 (Dezember 2013): 179–227. http://dx.doi.org/10.4028/www.scientific.net/ddf.347.179.
Der volle Inhalt der QuelleTitov, N. V. „Methodology for Measuring the Dose Rate of Pulsed Bremsstrahlung Radiation using Gamma Radiation Dosimeters with Geiger-Muller Counter“. Journal of the Russian Universities. Radioelectronics 27, Nr. 3 (01.07.2024): 97–107. http://dx.doi.org/10.32603/1993-8985-2024-27-3-97-107.
Der volle Inhalt der QuelleJain, Gourav K., Arun Chougule, Ananth Kaliyamoorthy und Suresh K. Akula. „Study of dosimetric characteristics of a commercial optically stimulated luminescence system“. Journal of Radiotherapy in Practice 16, Nr. 4 (31.05.2017): 461–75. http://dx.doi.org/10.1017/s1460396917000346.
Der volle Inhalt der QuelleWest, William Geoffrey, und Kimberlee Jane Kearfott. „Optically Stimulated Luminescence Dosimetry: An Introduction“. Solid State Phenomena 238 (August 2015): 161–73. http://dx.doi.org/10.4028/www.scientific.net/ssp.238.161.
Der volle Inhalt der QuelleGafar, Sameh Mohamed, und Nehad Magdy Abdel-Kader. „Radiation induced degradation of murexide dye in two media for possible use in dosimetric applications“. Pigment & Resin Technology 48, Nr. 6 (04.11.2019): 540–46. http://dx.doi.org/10.1108/prt-02-2019-0014.
Der volle Inhalt der QuelleNoorin, Eftekhar Sadat, Shahzad Feizi und Shahram Moradi Dehaghi. „Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects“. Radiochimica Acta 107, Nr. 3 (26.03.2019): 271–78. http://dx.doi.org/10.1515/ract-2018-3055.
Der volle Inhalt der QuelleWickramasinghe, Sachini Udara, Vijitha Ramanathan und Sivananthan Sarasanandarajah. „Evaluating Occupational Radiation Exposure in Interventional Cardiology: An Investigation into Estimating Effective Dose“. KDU Journal of Multidisciplinary Studies 5, Nr. 2 (28.11.2023): 157–65. http://dx.doi.org/10.4038/kjms.v5i2.87.
Der volle Inhalt der QuelleVargas-Segura, Walter, und Laura Rojas-Rojas. „Implementation of a high dose routine dosimetry in a self-shielded irradiator“. UNED Research Journal 16 (01.07.2024): e5229. http://dx.doi.org/10.22458/urj.v16i1.5229.
Der volle Inhalt der QuelleJung, Aleksandra, und Katarzyna Matusiak. „New trends in clinical and retrospective dosimetry“. Bio-Algorithms and Med-Systems 19, Nr. 1 (31.12.2023): 69–73. http://dx.doi.org/10.5604/01.3001.0054.1972.
Der volle Inhalt der QuellePrestopino, Giuseppe, Enrico Santoni, Claudio Verona und Gianluca Verona Rinati. „Diamond Based Schottky Photodiode for Radiation Therapy In Vivo Dosimetry“. Materials Science Forum 879 (November 2016): 95–100. http://dx.doi.org/10.4028/www.scientific.net/msf.879.95.
Der volle Inhalt der QuelleDissertationen zum Thema "Radiation dosimetry"
Samei, Ehsan. „Theoretical study of various thermoluminescent dosimeters heating schemes“. Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16481.
Der volle Inhalt der QuelleOlsson, Sara. „ESR dosimetry in the radiation therapy dose range : development of dosimetry systems and sensitive dosimeter materials /“. Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/med701s.pdf.
Der volle Inhalt der QuelleLim, Wee Kuan. „One-dimensional position-sensitive superheated-liquid-droplet in-phantom neutron dosimeter“. Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15893.
Der volle Inhalt der QuelleGotz, Malte. „Dosimetry of Highly Pulsed Radiation Fields“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234926.
Der volle Inhalt der QuelleSynchrocyclotrons and laser based particle accelerators, developed with the goal to enable more compact particle therapy facilities, may bring highly pulsed radiation field to external beam radiation therapy. In addition, such highly pulsed fields may be desirable due to their potential clinical benefits regarding better healthy tissue sparing or improved gating for moving tumors. However, they pose new challenges for dosimetry, the corner stone of any application of ionizing radiation. These challenges affect both clinical and radiation protection dosimetry. Air-filled ionization chambers, which dominate clinical dosimetry, face the problem of increased signal loss due to volume recombination when a highly pulsed field liberates a large amount of charge in a short time in the chamber. While well established descriptions exist for this volume recombination for the moderately pulsed fields in current use (Boag's formulas), the assumptions on which those descriptions are based will most likely not hold in the prospective, highly pulsed fields of future accelerators. Furthermore, ambient dose rate meters used in radiation protection dosimetry as survey meters or fixed installations are generally only tested for continuous fields, casting doubt on their suitability to measure pulsed fields. This thesis investigated both these aspects of dosimetry - clinical as well as radiation protection - to enable the medical application of highly pulsed radiation fields. For a comprehensive understanding, experimental investigations were coupled with theoretical considerations and developments. Pulsed fields, varying in both dose-per-pulse and pulse duration over a wide range, were generated with the ELBE research accelerator, providing a 20 MeV pulsed electron beam. Ionization chambers for clinical dosimetry were investigated using this electron beam directly, with an aluminium Faraday cup providing the reference measurement. Whereas the dose rate meters were irradiated in the photon field generated from stopping the electron beam in the Faraday cup. In those measurements, the reference was calculated from the ionization chamber, then serving a an electron beam monitor, cross-calibrated to the photon field with thermoluminescent dosimeters. Three dose rate meters based on different operating principles were investigated, covering a large portion of the operating principles used in radiation protection: the ionization chamber based RamION, the proportional counter LB 1236-H10 and the scintillation detector AD-b. Regarding clinical dosimetry, measurements of two prominent ionization chamber geometries, plane-parallel (Advanced Markus chamber) and thimble type (PinPoint chamber), were performed. In addition to common air-filled chambers, chambers filled with pure nitrogen and two non-polar liquids, tetramethylsilane and isooctane, were investigated. In conjunction with the experiments, a numerical solution of the charge liberation, transport, and recombination processes in the ionization chamber was developed to calculate the volume recombination independent of the assumptions necessary to derive Boag's formulas. Most importantly, the influence of the liberated charges in the ionization chamber on the electric field, which is neglected in Boag's formulas, is included in the developed calculation. Out of the three investigated dose rate meters only the RamION could be identified as an instrument truly capable of measuring a pulsed field. The AD-b performed below expectations (principally, a scintillator is not limited in detecting pulsed radiation), which was attributed to the signal processing, emphasizing the problem of a typical black-box signal processing in commercial instruments. The LB 1236-H10, on the other hand, performed as expected of a counting detector. While this supports the recent effort to formalize these expectations and standardize testing for counting dosimeters in DIN IEC/TS 62743, it also highlights the insufficiency of counting detectors for highly pulsed fields in general and shows the need for additional normative work to establish requirements for dose rate meters not based on a counting signal (such as the RamION), for which no framework currently exists. With these results recognized by the German radiation protection commission (SSK) the first steps towards such a framework are taken. The investigation of the ionization chambers used in radiation therapy showed severe discrepancies between Boag's formulas and the experimentally observed volume recombination. Boag's formulas describe volume recombination truly correctly only in the two liquid-filled chambers. All the gas-filled chambers required the use of effective parameters, resulting in values for those parameters with little to no relation to their original meaning. Even this approach, however, failed in the case of the Advanced Markus chamber for collection voltages ≥ 300 V and beyond a dose-per-pulse of about 100 mGy. The developed numerical model enabled a much better calculation of volume recombination and allowed the identification of the root of the differences to Boag's formulas as the influence of the liberated charges on the electric field. Increased positive space charge due to increased dose-per-pulse slows the collection and reduces the fraction of fast, free electrons, which are unaffected by volume recombination. The resultant increase in the fraction of charge undergoing volume recombination, in addition to the increase in the total amount of charge, results in an increase in volume recombination with dose-per-pulse that is impossible to describe with Boag's formulas. It is particularly relevant in the case of high electric fields and small electrode distances, where the free electron fraction is large. In addition, the numerical calculation allows for arbitrary pulse durations, while Boag's formulas apply only to very short pulses. In general, the numerical calculation worked well for plane-parallel chambers, including those filled with the very diverse media of liquids, nitrogen and air. Despite its increased complexity, the thimble geometry could be implemented as well, although, in the case of the PinPoint chamber, some discrepancies to the experimental data remained, probably due to the required geometrical approximations. A possible future development of the numerical calculation would be an improved description of the voltage dependence of the volume recombination. At the moment it requires characterizing a chamber at each desired collection voltage, which could be eliminated by an improved modeling of the volume recombination's dependence on collection voltage. Nevertheless, the developed numerical calculation presents a marked improvement over Boag's formulas to describe the dose-per-pulse dependence and pulse duration dependence of volume recombination in ionization chambers, in principle enabling the application of ionization chambers in the absolute dosimetry of highly pulsed fields
Griffin, Jonathan Alexander. „Radiation Dosimetry of Irregularly Shaped Objects“. Thesis, University of Canterbury. Physics and Astronomy, 2006. http://hdl.handle.net/10092/1402.
Der volle Inhalt der QuelleCavan, Alicia Emily. „Digital Holographic Interferometry for Radiation Dosimetry“. Thesis, University of Canterbury. Physics and Astronomy, 2015. http://hdl.handle.net/10092/10465.
Der volle Inhalt der QuelleBrauer-Krisch, E. „Experimental dosimetry for Microbeam Radiation Therapy“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1357933/.
Der volle Inhalt der QuelleJones, Bernard L. „Radiation dose analysis of NPS flash X-ray facility using silicon PIN diode“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FJones%5FBernard.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Todd R. Weatherford, Andrew A. Parker. Includes bibliographical references (p. 39). Also available online.
Ho, Wing-kwok. „Solar ultraviolet radiation : monitoring, dosimetry and protection /“. Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21583791.
Der volle Inhalt der QuelleCrescenti, Remo Andrea. „Backscatter ultrasound readout of radiation-sensitive gels for radiation dosimetry“. Thesis, Institute of Cancer Research (University Of London), 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511163.
Der volle Inhalt der QuelleBücher zum Thema "Radiation dosimetry"
Orton, Colin G., Hrsg. Radiation Dosimetry. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0.
Der volle Inhalt der QuelleMcParland, Brian J. Medical Radiation Dosimetry. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5403-7.
Der volle Inhalt der QuelleR, Martin Paul. Ionizing radiation dosimetry. Washington, D.C: National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenMartin, Paul R. Ionizing radiation dosimetry. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenStabin, Michael G., Hrsg. Radiation Protection and Dosimetry. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-49983-3.
Der volle Inhalt der QuelleMcParland, Brian J. Nuclear Medicine Radiation Dosimetry. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-126-2.
Der volle Inhalt der Quelle1940-, Mahesh K., und Vij D. R, Hrsg. Techniques of radiation dosimetry. New Delhi: Wiley Eastern, 1985.
Den vollen Inhalt der Quelle findenL, McLaughlin William, Hrsg. Dosimetry for radiation processing. London: Taylor & Francis, 1989.
Den vollen Inhalt der Quelle findenGreening, J. R. Fundamentals of radiation dosimetry. 2. Aufl. Bristol: Hilger in collaboration with Hospital Physicists' Association, 1985.
Den vollen Inhalt der Quelle findenRajan, K. N. Govinda. Advanced medical radiation dosimetry. New Delhi: Prentice Hall of India, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Radiation dosimetry"
Cerrito, Lucio. „Dosimetry“. In Radiation and Detectors, 37–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53181-6_3.
Der volle Inhalt der QuelleSharma, Seema. „Radiation Dosimetry“. In Practical Radiation Oncology, 21–30. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0073-2_3.
Der volle Inhalt der QuelleWagner, Günther A. „Radiation Dosimetry“. In Natural Science in Archaeology, 219–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03676-1_7.
Der volle Inhalt der QuelleNg, Kwan Hoong, Ngie Min Ung und Robin Hill. „Radiation Dosimetry“. In Problems and Solutions in Medical Physics, 69–91. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429159466-5.
Der volle Inhalt der QuelleMishra, Subhalaxmi, und T. Palani Selvam. „Radiation Dosimetry“. In Handbook of Metrology and Applications, 1–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-1550-5_116-1.
Der volle Inhalt der QuelleMishra, Subhalaxmi, und T. Palani Selvam. „Radiation Dosimetry“. In Handbook of Metrology and Applications, 2117–42. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2074-7_116.
Der volle Inhalt der QuelleOrton, Colin G. „Bioeffect Dosimetry in Radiation Therapy“. In Radiation Dosimetry, 1–71. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_1.
Der volle Inhalt der QuelleAlmond, Peter R. „A Comparison of National and International Megavoltage Calibration Protocols“. In Radiation Dosimetry, 73–86. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_2.
Der volle Inhalt der QuelleSvensson, Hans, und Anders Brahme. „Recent Advances in Electron and Photon Dosimetry“. In Radiation Dosimetry, 87–170. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_3.
Der volle Inhalt der QuelleZaider, Marco, und Harald H. Rossi. „Microdosimetry and Its Application to Biological Processes“. In Radiation Dosimetry, 171–242. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Radiation dosimetry"
Liu, Yanping, Zhaoyang Chen, Yanwei Fan, Weizhen Ba und Shilie Pan. „A Novel Radiation Dosimetry Based on Optically Stimulated Luminescence“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48023.
Der volle Inhalt der QuelleBos, Adrie J. J., Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico und Marko Moscovitch. „Fundamentals of Radiation Dosimetry“. In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576156.
Der volle Inhalt der QuelleSoltani, Peter K., Charles Y. Wrigley, George M. Storti und Ramon E. Creager. „Fiber Optic Radiation Dosimetry“. In OE/FIBERS '89, herausgegeben von Ramon P. DePaula und Eric Udd. SPIE, 1990. http://dx.doi.org/10.1117/12.963073.
Der volle Inhalt der QuelleGreer, Peter B., Philip Vial, Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico und Marko Moscovitch. „Epid Dosimetry“. In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576163.
Der volle Inhalt der QuellePopova, Mariia, Dmitrii Vakhnin und Igor Tyshchenko. „EPR-dosimetry of ionizing radiation“. In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002913.
Der volle Inhalt der QuelleMajchrowski, Andrzej. „Thermoluminescence in ionizing radiation dosimetry“. In Solid State Crystals: Materials Science and Applications, herausgegeben von Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.224985.
Der volle Inhalt der QuelleTriandini, Annisa Retno, und Muhammad Fathony. „Radiation Protection on Patient Dosimetry“. In 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). IEEE, 2017. http://dx.doi.org/10.1109/icici-bme.2017.8537756.
Der volle Inhalt der QuelleSliney, David H. „Dosimetry for ultraviolet radiation exposure of the eye“. In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180811.
Der volle Inhalt der QuelleO'Keeffe, S., E. Lewis, A. Santhanam, A. Winningham und J. P. Rolland. „Low dose plastic optical fibre radiation dosimeter for clinical dosimetry applications“. In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398516.
Der volle Inhalt der QuelleKlimov, Nikolai N., Zeeshan Ahmed, Lonnie T. Cumberland, Ileana M. Pazos, Fred Bateman, Ronald E. Tosh und Ryan Fitzgerald. „Silicon Nanophotonics Platform for Radiation Dosimetry“. In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.fw5c.5.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Radiation dosimetry"
Valeri, C. R., und J. J. Vecchione. Radiation Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1997. http://dx.doi.org/10.21236/ada360331.
Der volle Inhalt der QuelleSims, C., und R. Swaja. (Radiation dosimetry). Office of Scientific and Technical Information (OSTI), März 1987. http://dx.doi.org/10.2172/6765798.
Der volle Inhalt der QuelleKase, K. Concepts of Radiation Dosimetry. Office of Scientific and Technical Information (OSTI), Juni 2018. http://dx.doi.org/10.2172/1453910.
Der volle Inhalt der QuelleHumphreys, Jimmy C., James M. Puhl, Stephen M. Seltzer, William L. McLaughlin, Vitaly Y. Nagy, Debra L. Bensen und Marlon L. Walker. Radiation processing dosimetry calibration services :. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.sp.250-45.
Der volle Inhalt der QuelleMiller, Daniel W., Peter H. Bloch, John R. Cunningham, Bruce H. Curran, Geoffrey S. Ibbott, Douglas Jones, Shirley Z. Jucius, Dennis D. Leavitt, Radhe Mohan und Jan van de Geijin. Radiation Treatment Planning Dosimetry Verification. AAPM, 1995. http://dx.doi.org/10.37206/54.
Der volle Inhalt der QuellePeter G. Groer. Bayesian Methods for Radiation Detection and Dosimetry. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/801527.
Der volle Inhalt der QuelleGladhill, Robert L., Jeffrey Horlick und Elmer Eisenhower. The National Personnel Radiation Dosimetry Accreditation Program. Gaithersburg, MD: National Bureau of Standards, Januar 1986. http://dx.doi.org/10.6028/nbs.ir.86-3350.
Der volle Inhalt der QuelleSwaja, R. E. Survey of international personnel radiation dosimetry programs. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5808001.
Der volle Inhalt der QuelleGreenwood, L. R., und R. T. Ratner. Neutron dosimetry and radiation damage calculations for HFBR. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/335413.
Der volle Inhalt der QuelleHintenlang, D. E., K. Jamil und L. H. Iselin. Mixed-radiation-field dosimetry utilizing Nuclear Quadrupole Resonance. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/6707222.
Der volle Inhalt der Quelle