Auswahl der wissenschaftlichen Literatur zum Thema „Radar meteorology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Radar meteorology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Radar meteorology":

1

Browning, K. A. „Uses of radar in meteorology“. Contemporary Physics 27, Nr. 6 (November 1986): 499–517. http://dx.doi.org/10.1080/00107518608211028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hallett, John, Melanie Wetzel und Steven Rutledge. „Field Training in Radar Meteorology“. Bulletin of the American Meteorological Society 74, Nr. 1 (Januar 1993): 17–22. http://dx.doi.org/10.1175/1520-0477(1993)074<0017:ftirm>2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lombardo, F., F. Napolitano, F. Russo, G. Scialanga, L. Baldini und E. Gorgucci. „Rainfall estimation and ground clutter rejection with dual polarization weather radar“. Advances in Geosciences 7 (16.02.2006): 127–30. http://dx.doi.org/10.5194/adgeo-7-127-2006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. Conventional radars, used for atmospheric remote sensing, usually operate at a single polarization and frequency to estimate storm parameters such as rainfallrate and water content. Because of the high variability of the drop size distribution conventional radars do not succeed in obtaining detailed information because they just use horizontal reflectivity. The potentiality of the dual-polarized weather radar is investigated, in order to reject the ground-clutter, using differential reflectivity. In this light, a radar meteorology campaign was conducted over the city of Rome (Italy), collecting measurements by the polarimetric Doppler radar Polar 55C and by a raingauge network. The goodness of the results is tested by comparison of radar rainfall estimates with raingauges rainfall measurements.
4

Rutledge, Steven A., und V. Chandrasekar. „Some Educational Innovations in Radar Meteorology“. Meteorological Monographs 30, Nr. 52 (August 2003): 259. http://dx.doi.org/10.1175/0065-9401(2003)030<0259:seiirm>2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Meischner, Peter. „First European conference on radar meteorology“. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 25, Nr. 10-12 (Januar 2000): 811. http://dx.doi.org/10.1016/s1464-1909(00)00106-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zrnić, Dušan S. „Weather Radar Polarimetry–Trends Toward Operational Applications“. Bulletin of the American Meteorological Society 77, Nr. 7 (01.07.1996): 1529–34. http://dx.doi.org/10.1175/1520-0477-77.7.1529.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This is a version of a speech presented at the 27th Conference on Radar Meteorology. Relative advantages of polarimetry are contrasted with the advantages accrued by the introduction of radar into meteorology and by the addition of Doppler measurements. A description of present interests as perceived by the author follows, and possible future trends are suggested.
7

Martin, William J., und Alan Shapiro. „Discrimination of Bird and Insect Radar Echoes in Clear Air Using High-Resolution Radars“. Journal of Atmospheric and Oceanic Technology 24, Nr. 7 (01.07.2007): 1215–30. http://dx.doi.org/10.1175/jtech2038.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract The source of clear-air reflectivity from operational and research meteorological radars has been a subject of much debate and study over the entire history of radar meteorology. Recent studies have suggested that bird migrations routinely contaminate wind profiles obtained at night, while historical studies have suggested insects as the main source of such nocturnal clear-air echoes. This study analyzes two cases of nocturnal clear-air return using data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) and X- and W-band research radars. The research radars have sufficient resolution to resolve the echo as point targets in some cases. By examining the radar cross section of the resolved point targets, and by determining the target density, it is found for both cases of nocturnal clear-air echoes that the targets are almost certainly insects. The analysis of the dependence of the echo strength on radar wavelength also supports this conclusion.
8

Areerachakul, Nathaporn, Sethakarn Prongnuch, Peeranat Longsomboon und Jaya Kandasamy. „Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin“. Hydrology 9, Nr. 10 (11.10.2022): 178. http://dx.doi.org/10.3390/hydrology9100178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This study of the Quantitative Estimation Precipitation (QEP) of rainfall, detected by two Meteorology Radars over Chi Basin, North-east Thailand, used data from the Thai Meteorological Department (TMD). The rainfall data from 129 rain gauge stations in the Chi Basin area, covering a period of two years, was also used. The study methodology consists of: firstly, deriving the QPE between radar and rainfall based on meteorological observations using the Marshall Palmer Stratiform, the Summer Deep Convection, and Regression Model and calibrating with rain gauge station data; secondly, Bias Correction using statistical method; thirdly, determining spatial variation using three methods, namely Kriging, Inverse Distance Weight (IDW), and the Minimum Curvature Method. The results of the study demonstrated the accuracy of estimating precipitation using meteorological radar. Estimated precipitation compared against an equivalent of 2 years of rain station measurement had a probability of detection (POD) of 0.927, where a value of 1 indicated perfect agreement, demonstrating the effectiveness of the method used to calibrate the radar data. The bias correction method gave high accuracy compared with measured rainfall. Furthermore, of the spatial estimation of rainfall methods, the Kriging methodology showed the best fit between estimation of rainfall distribution and measured rainfall distribution. Therefore, the results of this study showed that the rainfall estimation, using data from a meteorology radar, has good accuracy and can be useful, especially in areas where it is not possible to install and operate rainfall measurement stations, such as in heavily forested areas and/or in steep terrain. Additionally, good accuracy rainfall data derived from radar data can be integrated with other data used for water management and natural disasters for applications to reduce economic losses, as well as losses of life and property.
9

Steiner, Matthias, und Peter F. Meischner. „The 30th International Conference on Radar Meteorology“. Bulletin of the American Meteorological Society 83, Nr. 11 (November 2002): 1649–56. http://dx.doi.org/10.1175/bams-83-11-1649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Steiner, Matthias, und Peter F. Meischner. „The 30th International Conference on Radar Meteorology“. Bulletin of the American Meteorological Society 83, Nr. 11 (November 2002): 1649–56. http://dx.doi.org/10.1175/bams-83-11-1649(2002)083<1649:ticorm>2.3.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Radar meteorology":

1

Carlsson, Andreas. „Vindjämförelse mellan VAD-algoritm och FMCW-radar“. Thesis, Uppsala universitet, Institutionen för geovetenskaper, 1998. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
I denna undersökning som mestadels koncentrerat sig på VAD-algoritmen och dess fördelar och nackdelar har till att börja med två för algoritmen särdeles viktiga parametrar undersökts. Totala antalet VAD-cirklar respektive andelen av dessa som i slutänden ger en vind som resultat har direkt studerats som en funktion av tiden och samtidigt indirekt mot de synoptiska väderförhållanden som rådde vid tidpunkten i fråga. Som en andra del av arbetet utfördes en mestadels relativ jämförelse där två till viss del olika radaralgoritmer jämfördes i samband med olika vädersituationer och olika tider på dygnet. Vad det gäller totala antalet cirklar visade sig en god korrelation mot det storskaliga vädret vilket främst kunde ses i samband med frontpassager medan ingen typ av regelbunden dygnsvariation kunde ses. Andelen cirklar som i slutänden gav godkänd vind som resultat visade istället en starkt regelbunden dygnskorrelation medan enbart en ytterst svag korrelation med vädret kunde ses. Den följande jämförelsen visade på två intressanta resultat i samband med natt- respektive dagmätningar samt mätningar utförda vid två högtryckssituationer. Den första jämförelsen visade på en markant större skillnad i mätresultat i samband med nattliga mätningar än vid mätningar i liknande vädersituationer utförda dagtid. Sammankopplat med resultatet som gavs i samband med andelen resultatgivande cirklar antyder detta att VAD-algoritmen i samband med nattliga mätningar ger ett relativt inkorrekt resultat. Ett andra intressant resultat gavs i det visade sig finnas en signifikant skillnad i resultaten vid de jämförelsen mellan resultaten från mätningarna utförda vid de två ovan angivna högtryckssituationerna.
2

James, Curtis Neal. „Radar observations of orographic precipitation /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/10082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

May, Peter T. „VHF radar studies of the troposphere /“. Title page, contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm4666.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

MacKinnon, Andrew David. „VHF Boundary Layer Radar and RASS“. Title page, abstract and table of contents, 2001. http://hdl.handle.net/2440/37807.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis describes the refinements, modifications and additions to a prototype Very High Frequency (VHF) Boundary Layer (BL) Spaced Antenna (SA) radar initially installed at the University of Adelaide's Buckland Park field site in 1997. Previous radar observations of the lowest few kilometres of the atmosphere, in particular the Atmospheric Boundary Layer, have used Ultra-High Frequency (UHF) radars. Unlike VHF radars, UHF radars are extremely sensitive to hydro-meteors and have difficulty in distinguishing clear-air echoes from precipitation returns. The advantages and requirements of using a VHF radar to observe the lowest heights is discussed in conjunction with some of the limitations. The successful operation of the system over long periods has enabled in-depth investigation of the performance of the system in a variety of conditions and locations. Observations were made from as low as 300m and as high as 8 km, dependent upon conditions. Comparisons between the radar and alternative wind measuring devices were carried out and examined. The antenna system of the radar is a critical component which was analysed in depth and subsequently re-designed. Through the use of numerical models and mea- surements, evaluation of different designs was accomplished. Further calibration of the remaining components of the full system has enabled estimations of the absolute received power. Additional parameters which can be derived with a calibrated radar were compared with values obtained by other authors, giving favourable results. Full Correlation Analysis (FCA) is the predominant technique used in this work. A brief discussion of the background theory and parameters which can be measured is described. A simple one-dimensional model was developed and combined with a 'radar backscatter model' to investigate potential sources of errors in the parameters determined using FCA with the VHF Boundary Layer Radar. In particular, underes- timations in the wind velocity were examined. The integration of a Radio Acoustic Sounding System (RASS) to obtain tempera- ture profiles is discussed. The theory of RASS measurements including the limitations and considerations which are required for the VHF BL radar are given. The difficulties encountered trying to implement such a system and the subsequent success using a Stratospheric Tropospheric (ST) Profiler in place of the BL radar is presented. Taken as a whole this thesis shows the success of the VHF BL to obtain mea- surements from as low as 300m. The validation of this prototype radar provides an alternative and, in certain situations, a superior device with which to study the lower troposphere.
Thesis (Ph.D.)--Department of Physics and Mathematical Physics, 2001.
5

Duncan, Mike R. (Mike Ross). „The universal multifractal nature of radar echo fluctuations“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The intensity returns obtained by a radar from precipitation are well known to fluctuate violently in space and time. We present a systematic study of the resolution dependence time series with overlapping time resolutions spanning 10 orders of magnitude (0.77 ms to 4 months), of the fluctuating radar echo from precipitation. The results undermine the current assumptions of homogeneity of rainfield at scales smaller than the radar resolution, due to Marshall and Hitschfeld (1953), by showing that the only length scales identifiable in the time series are those of the radar pulse volume, the wavelength, and a very small inner scale of the order of millimeters. An analysis of the multiscaling nature of the time series of echo fluctuations reveals multiscaling behaviour at scales down to the resolution or pulse volume scale. Since there are no a priori scales in the rainfield we proceed to model the fluctuating radar echo by assuming a multiscaling model of rainfield variability which extends to sub-resolution scales. A systematic analysis of the statistical behaviour of computed reflectivities from this variability gives a full statistical description of reflectivity originating from multiscaling variability, and solves the scalar multifractal radar observer's problem. Computation of time series of reflectivities from a time-space representation of this variability reveals quantitative and qualitative behaviours consistent with those of observed echo fluctuation time series. We conclude that a multiscaling model of the rainfield which extends to the smallest scales of the rainfield is consistent with observation.
6

Kazempour, Alireza. „Meteorological studies of cut-off lows over Australia with a VHF radar /“. Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phk2361.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Carlsson, Andreas. „A comparison between wind measurements with doppler weather radar and rawinds“. Thesis, Uppsala universitet, Meteorologiska institutionen, 1996. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Comparisons between wind measurement with doppler weather radar and wind measurement with rawinds in different weather situations is done. The study is made in a statistical way with some comparable parameters as outcome. The importance of the weather and different weather situation’s effect on the results are discussed, both in form of the winds accuracy and the probability of getting any wind at all as outcome. The study shows that wind measurement with doppler radar at lower elevations not has so good accuracy, but it becomes better the higher up we measure. At the same time will we lose a lot of the measurements at higher levels by the reason that the reflected power is weakened very fast with the distance the transmitted ray travel.  The doppler effect is explained and the by SMHI used routine for wind measurement with radar is described. At the end of the work are some problems and disadvantages with the radar measurements and the used method discussed.
8

Leon, David C. „Observations of drizzle cells in marine stratocumulus“. Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1212794291&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cáceres, León Richard Humberto. „Impacto de la asimilación radar en el pronóstico de precipitación a muy corto plazo usando el modelo WRF“. Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/665103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
El propósito de esta investigación es maximizar el impacto de la asimilación de datos radar sobre el pronóstico de precipitación a muy corto plazo usando el modelo Weather Research and Forecasting (WRF), de tal manera que pueda ser implementado de modo operativo en los Servicios Meteorológicos Nacionales. En una primera fase se utiliza un episodio de precipitación extrema que tuvo lugar en Cataluña (NE de España) para probar varias configuraciones de predicción inmediata, basadas en el modelo WRF con la asimilación de datos radar, y en una segunda fase, se profundizan los resultados a través de una serie de experimentos basados en diez eventos de precipitación extrema ocurridos en Cataluña en el periodo 2015 - 2017. Las configuraciones consideradas se generan modificando: 1) el ciclo de inicialización del WRF, 2) los procedimientos de preprocesamiento de datos radar utilizados por el Centro Nacional de Investigación Atmosférica (NCAR) y por el Servicio Meteorológico de Cataluña (SMC), 3) datos convencionales y de radar asimilados dentro del sistema variacional tridimensional (3DVAR), y 4), otros parámetros tales como la escala de longitud de las observaciones, el número de bucles externos y la parametrización de la convección húmeda. El efecto de los anteriores parámetros se evalúa mediante la habilidad de una serie de experimentos para simular la cantidad y localización de la precipitación usando técnicas estadísticas convencionales, índices categóricos y el Receiver Operating Characteristic (ROC). Sin embargo, en este estudio la construcción de las tablas de contingencia está condicionada al desplazamiento del patrón de precipitación y la cercanía entre los valores observados y pronosticados, sin considerar los umbrales de precipitación. El método de control de calidad desarrollado por el SMC es confiable y en el caso particular del 12 de octubre de 2016, produjo mejores resultados que el método de NCAR. La predicción inmediata de precipitación logra mejores resultados cuando el modelo WRF es ejecutado con dos ciclos de asimilación, uno en frío y otro en caliente con un length scale de 0.75 y 0.50 respectivamente, asimilando en cada ciclo datos radar y datos convencionales en un mismo momento y con el error del background CV7. Los largos ciclos de inicialización, las actuales parametrizaciones usadas en el SMC y el uso de tres bucles externos no mejoran los resultados del pronóstico.
The purpose of this research is to maximize the radar data assimilation impact on precipitation nowcasting using the Weather Research and Forecasting (WRF), in such a way that it can be implemented operationally in the National Meteorological Services. In a first phase is used an episode of extreme precipitation that took place in Catalonia (NE Spain) to test several nowcasting system configurations, which are based on the Weather Research and Forecasting (WRF) model with radar data assimilation, and in a second phase, the results are deepened through a series of experiments based on ten extreme precipitation events that occurred in Catalonia in the period 2015 - 2017. The configurations considered are generated by modifying the following elements: 1) the WRF initialization cycle, 2) the radar data preprocessing procedures used by the National Center for Atmospheric Research (NCAR) and by the Meteorological Service of Catalonia (SMC), 3) conventional and radar data assimilated within the three dimensional variational system (3DVAR), and 4), other parameters such as the observations length scale, number of outer loops and the cumulus parameterization. The effect of the previous parameters is evaluated through the skill of the different experiments to simulate both the amount and location of precipitation using conventional statistical techniques, categorical indices and the Receiver Operating Characteristic (ROC). However, in this study the construction of the contingency tables has been conditioned to the precipitation pattern displacement and the closeness between the observed and forecast values without considering precipitation thresholds. The quality control method developed by the SMC is trustworthy and in the particular case occurred on October 12, 2016, it produced better results than the NCAR method. The precipitation nowcasting achieves better results when the WRF model is executed with two assimilation cycles, one in cold and another in warm with a length scale of 0.75 and 0.50 respectively, assimilating in each of these cycles radar data and conventional data (METAR and SYNOP) at the same time and with the background error CV7. The long initialization cycles, the current parameterizations used in the SMC and the use of three external loops do not improve the forecast results.
10

Lai, Kim (Hsin-Jung). „A super fast scanning technique for phased array weather radar applications /“. [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17007.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Radar meteorology":

1

Raghavan, S. Radar Meteorology. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rauber, Robert M., und Stephen W. Nesbitt. Radar Meteorology. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781118432662.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

S, Raghavan. Radar meteorology. Dordrecht: Kluwer Academic Publishers, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sauvageot, Henri. Radar meteorology. Boston: Artech House, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Atlas, David, Hrsg. Radar in Meteorology. Boston, MA: American Meteorological Society, 1990. http://dx.doi.org/10.1007/978-1-935704-15-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Battan Memorial and 40th Anniversary Radar Meteorology Conference (1987 Boston, Mass.). Radar in meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference. Boston: American Meteorological Society, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fabry, Frédéric. Radar meteorology: Principles and practice. Cambridge, United Kingdom: Cambridge University Press, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rinehart, Ronald E. Radar for meteorologists, or, You too can be a radar meteorologist. 2. Aufl. Grand Forks, N.D: R.E. Rinehart, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fukao, S. Radar for meteorological and atmospheric observations. Toyko: Springer, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Meneghini, R. Spaceborne weather radar. Boston: Artech House, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Radar meteorology":

1

Raghavan, S. „Radar Meteorology — History, Principles and Technology“. In Radar Meteorology, 1–49. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Raghavan, S. „Observations with “Clear Air” Radars“. In Radar Meteorology, 387–445. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Raghavan, S. „Special Applications, New Radars and the Future“. In Radar Meteorology, 447–66. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Raghavan, S. „Propagation, Scattering and Attenuation of Microwaves in the Lower Atmosphere“. In Radar Meteorology, 51–91. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Raghavan, S. „Weather Radar Signal Processing and Display“. In Radar Meteorology, 93–160. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Raghavan, S. „Phenomena Observed by Weather Radar“. In Radar Meteorology, 161–82. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Raghavan, S. „Operational Weather Radar“. In Radar Meteorology, 183–209. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Raghavan, S. „Radar Observation of Weather Systems“. In Radar Meteorology, 211–59. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Raghavan, S. „Estimation of Precipitation“. In Radar Meteorology, 261–312. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Raghavan, S. „Radar Observation of Tropical Cyclones“. In Radar Meteorology, 313–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Radar meteorology":

1

Goddard, J. W. F. „The Chilbolton radar facility“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Galati, G. „Multiparameter radar techniques for rainfall“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kilburn, C. A. D. „Using super-resolution to study small scale structures in the atmosphere“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Archibald, E. J. „Application oriented design of hydrological radar data processing systems“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nativi, S. „Microwave monitoring of rainfall: some possibilities and problems“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Griffiths, H. D. „Provision of a rainfall measuring mode in a satellite-borne radar altimeter“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Eastment, J. D. „An S-band Doppler radar to measure precipitation characteristics in the tropics“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Brown, P. R. A. „The role of spaceborne millimetre-wave radar in the global monitoring of ice cloud“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bebbington, D. H. O. „Clutter removal strategies in meteorological radars using interferometric imaging“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tan, J. „The use of dual-polarisation techniques for bright-band detection with PPI-based radars“. In IEE Colloquium on Radar Meteorology. IEE, 1995. http://dx.doi.org/10.1049/ic:19950204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Radar meteorology":

1

Kelly, Robert D., und Gabor Vali. Coastal Meteorology and Oceanography with Airborne 95 GHz Radar. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada336790.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sikora, Todd D., George S. Young und Nathaniel S. Winstead. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sikora, Todd D., George S. Young und Nathaniel S. Winstead. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533584.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sikora, Todd D., George S. Young und Nathaniel S. Winstead. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sikora, Todd D., George S. Young und Nathaniel S. Winstead. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541816.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sikora, Todd D. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541828.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sikora, Todd D. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada570975.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sikora, Todd D., George S. Young und Nathanial S. Winstead. Applications of Synthetic Aperture Radar to Meteorology and Oceanography Command Operations. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

de Vos, Lotte, Hidde Leijnse und Remko Uijlenhoet. 10th European Conference on Radar in Meteorology and Hydrology (ERAD 2018) : 1-6 July 2018, Ede-Wageningen, The Netherlands. Wageningen: Wageningen University & Research, 2018. http://dx.doi.org/10.18174/454537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie