Zeitschriftenartikel zum Thema „Radar Antennas Testing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Radar Antennas Testing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Wang, Bin, Shunan Wang, Dan Zeng und Min Wang. „Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition“. Electronics 11, Nr. 9 (26.04.2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Der volle Inhalt der QuelleWang, Bin, Shunan Wang, Dan Zeng und Min Wang. „Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition“. Electronics 11, Nr. 9 (26.04.2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Der volle Inhalt der QuelleWang, Bin, Shunan Wang, Dan Zeng und Min Wang. „Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition“. Electronics 11, Nr. 9 (26.04.2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Der volle Inhalt der QuelleMARUDDANI, BASO, EFRI SANDI EFRI SANDI und MUHAMMAD FADHIL NAUFAL SALAM. „Perancangan dan Optimasi Antena Vivaldi pada Sistem Radar Penembus Permukaan (Ground Penetrating Radar)“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 7, Nr. 1 (24.01.2019): 151. http://dx.doi.org/10.26760/elkomika.v7i1.151.
Der volle Inhalt der QuelleChipengo, Ushemadzoro, Peter M. Krenz und Shawn Carpenter. „From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Corner Case Simulation“. Modelling and Simulation in Engineering 2018 (27.12.2018): 1–19. http://dx.doi.org/10.1155/2018/4239725.
Der volle Inhalt der QuelleBernatek-Jakiel, Anita, und Marta Kondracka. „Detection of Soil Pipes Using Ground Penetrating Radar“. Remote Sensing 11, Nr. 16 (09.08.2019): 1864. http://dx.doi.org/10.3390/rs11161864.
Der volle Inhalt der QuelleLangston, Glen. „NRAO 43-m telescope operation at 170-1700 MHz: a Bi-Static Radar Collaboration“. Proceedings of the International Astronomical Union 2, Nr. 14 (August 2006): 367. http://dx.doi.org/10.1017/s1743921307011015.
Der volle Inhalt der QuelleGalajda, Pavol, Alena Galajdova, Stanislav Slovak, Martin Pecovsky, Milos Drutarovsky, Marek Sukop und Ihab BA Samaneh. „Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments“. International Journal of Advanced Robotic Systems 15, Nr. 4 (01.07.2018): 172988141879576. http://dx.doi.org/10.1177/1729881418795767.
Der volle Inhalt der QuellePryshchenko, Oleksandr A., Vadym Plakhtii, Oleksandr M. Dumin, Gennadiy P. Pochanin, Vadym P. Ruban, Lorenzo Capineri und Fronefield Crawford. „Implementation of an Artificial Intelligence Approach to GPR Systems for Landmine Detection“. Remote Sensing 14, Nr. 17 (05.09.2022): 4421. http://dx.doi.org/10.3390/rs14174421.
Der volle Inhalt der QuelleAjith, K. K., und Amitabha Bhattacharya. „Improving the GPR Detectability Using a Novel Loop Bowtie Antenna“. Journal of Telecommunications and Information Technology, Nr. 3 (2017): 9–16. http://dx.doi.org/10.26636/jtit.2017.120917.
Der volle Inhalt der QuelleIonescu, Liviu, Alexandru Rusu-Casandra, Calin Bira, Alexandru Tatomirescu, Ionut Tramandan, Roberto Scagnoli, Dan Istriteanu und Andrei-Edward Popa. „Development of the Romanian Radar Sensor for Space Surveillance and Tracking Activities“. Sensors 22, Nr. 9 (06.05.2022): 3546. http://dx.doi.org/10.3390/s22093546.
Der volle Inhalt der QuelleWassie, Y., M. Crosetto, G. Luzi, O. Monserrat, A. Barra, R. Palamá, M. Cuevas-González, S. M. Mirmazloumi, P. Espín-López und B. Crippa. „ACTIVE REFLECTORS FOR INTERFEROMETRIC SAR DEFORMATION MEASUREMENT“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021 (28.06.2021): 177–82. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2021-177-2021.
Der volle Inhalt der QuelleChoudhary, Vipin, und Daniel Rönnow. „A Nondestructive Testing Method for the Determination of the Complex Refractive Index Using Ultra Wideband Radar in Industrial Applications“. Sensors 20, Nr. 11 (02.06.2020): 3161. http://dx.doi.org/10.3390/s20113161.
Der volle Inhalt der QuelleHolt, J. M., P. J. Erickson, A. M. Gorczyca und T. Grydeland. „MIDAS-W: a workstation-based incoherent scatter radar data acquisition system“. Annales Geophysicae 18, Nr. 9 (30.09.2000): 1231–41. http://dx.doi.org/10.1007/s00585-000-1231-3.
Der volle Inhalt der QuelleKyzioł, Lesław, Katarzyna Panasiuk, Grzegorz Hajdukiewicz und Krzysztof Dudzik. „Acoustic Emission and K-S Metric Entropy as Methods for Determining Mechanical Properties of Composite Materials“. Sensors 21, Nr. 1 (28.12.2020): 145. http://dx.doi.org/10.3390/s21010145.
Der volle Inhalt der QuelleGuliyev, Etibar, Rashad Allahverdiyev und Qezale Kheyrabadi. „Identification of the patterns of influence the number of reinforcing elements and the inhomogeneity parameter of the shell material on frequencies of a reinforced inhomogeneous orthotropic spherical shell with a medium“. Eastern-European Journal of Enterprise Technologies 5, Nr. 7 (119) (31.10.2022): 35–43. http://dx.doi.org/10.15587/1729-4061.2022.266166.
Der volle Inhalt der QuelleKonopel'kin, M. Yu, S. V. Petrov und D. A. Smirnyagina. „Implementation of stochastic signal processing algorithms in radar CAD“. Russian Technological Journal 10, Nr. 5 (21.10.2022): 49–59. http://dx.doi.org/10.32362/2500-316x-2022-10-5-49-59.
Der volle Inhalt der QuelleZhou, Daochuan, und Haitang Zhu. „Application of Ground Penetrating Radar in Detecting Deeply Embedded Reinforcing Bars in Pile Foundation“. Advances in Civil Engineering 2021 (17.04.2021): 1–13. http://dx.doi.org/10.1155/2021/4813415.
Der volle Inhalt der QuelleVolosyuk, Valeriy, und Semen Zhyla. „Statistical Theory of Optimal Stochastic Signals Processing in Multichannel Aerospace Imaging Radar Systems“. Computation 10, Nr. 12 (18.12.2022): 224. http://dx.doi.org/10.3390/computation10120224.
Der volle Inhalt der QuelleMahdi, Sultan, und Syahfrizal Tahcfulloh. „DOA Signal Identification Based on Amplitude and Phase Estimation for Subarray MIMO Radar Applications“. Jurnal Elektronika dan Telekomunikasi 22, Nr. 2 (31.12.2022): 48. http://dx.doi.org/10.55981/jet.498.
Der volle Inhalt der QuelleFrançoso, Maria Teresa, Carolina Oyama Mota, Tadeu Rosanti Sugahara Medeiros Lima und Creso De Franco Peixoto. „Nondestructive Testing in Asphalt Pavements Using Ground Penetrating Radar (GPR)“. Applied Mechanics and Materials 303-306 (Februar 2013): 525–28. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.525.
Der volle Inhalt der QuelleMbotshwa, Cosygyn, Felix Mazunga und Joseph Singadi. „Design, Fabrication and Testing of an Ultra-Wide Band Bowtie Antenna for Wireless Radar (UHF, L and S Band) Communication“. International Journal of Advanced Networking and Applications 14, Nr. 01 (2022): 5261–65. http://dx.doi.org/10.35444/ijana.2022.14104.
Der volle Inhalt der QuelleYu, Bi Qiong. „Azimuths Scan Servo System Design of the Radar“. Applied Mechanics and Materials 321-324 (Juni 2013): 680–83. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.680.
Der volle Inhalt der QuelleUkhanov, E. V. Ukhanov. „SOLVING THE PROBLEM OF OPTIMAL RADAR RECOGNITION OF MOBILE AERIAL OBJECTS BASED ON THE THEORY OF STATISTICAL HYPOTHESIS TESTING“. T-Comm 16, Nr. 11 (2022): 30–34. http://dx.doi.org/10.36724/2072-8735-2022-16-11-30-34.
Der volle Inhalt der QuelleSpagnolo, Matteo, Edward C. King, David W. Ashmore, Brice R. Rea, Jeremy C. Ely und Chris D. Clark. „Looking through drumlins: testing the application of ground-penetrating rada“. Journal of Glaciology 60, Nr. 224 (2014): 1126–34. http://dx.doi.org/10.3189/2014jog14j110.
Der volle Inhalt der QuelleEhrnsperger, Matthias G., Uwe Siart, Michael Moosbühler, Emil Daporta und Thomas F. Eibert. „Signal degradation through sediments on safety-critical radar sensors“. Advances in Radio Science 17 (19.09.2019): 91–100. http://dx.doi.org/10.5194/ars-17-91-2019.
Der volle Inhalt der QuelleLakshmaiah, Akumalla, N. N. S. S. R. K. Prasad und K. P. Ray. „Investigations on Monolithic Radome Interactions with Active Electronically Scanned Array on Fighter Platform“. Defence Science Journal 71, Nr. 5 (02.09.2021): 662–69. http://dx.doi.org/10.14429/dsj.71.16398.
Der volle Inhalt der QuelleNorrdine, Abdelmoumen, Harun Cetinkaya und Reinhold Herschel. „Radar Wave Based Positioning of Spatially Distributed MIMO Radar Antenna Systems for Near-Field Nondestructive Testing“. IEEE Sensors Letters 4, Nr. 5 (Mai 2020): 1–4. http://dx.doi.org/10.1109/lsens.2020.2989546.
Der volle Inhalt der QuelleWu, Yuxuan, Feng Shen, Yue Yuan und Dingjie Xu. „An Improved Modified Universal Ultra-Wideband Antenna Designed for Step Frequency Continuous Wave Ground Penetrating Radar System“. Sensors 19, Nr. 5 (01.03.2019): 1045. http://dx.doi.org/10.3390/s19051045.
Der volle Inhalt der QuelleQiua, Dong Dong, Yong Jiang Sun, Hua Song Jin und Jian Cheng Yu. „Directional Pattern Measuring System Research of a TT&C Antenna“. Advanced Materials Research 774-776 (September 2013): 1518–22. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.1518.
Der volle Inhalt der QuelleAzizi, Mussyazwann Azizi Mustafa, Mohammad Nazrin Mohd Noh, Idnin Pasya, Ahmad Ihsan Mohd Yassin und Megat Syahirul Amin Megat Ali. „Pedestrian detection using Doppler radar and LSTM neural network“. IAES International Journal of Artificial Intelligence (IJ-AI) 9, Nr. 3 (01.09.2020): 394. http://dx.doi.org/10.11591/ijai.v9.i3.pp394-401.
Der volle Inhalt der QuelleUllah, Raza, Sadiq Ullah, Farooq Faisal, Rizwan Ullah, Dong-you Choi, Ashfaq Ahmad und Babar Kamal. „High-Gain Vivaldi Antenna with Wide Bandwidth Characteristics for 5G Mobile and Ku-Band Radar Applications“. Electronics 10, Nr. 6 (12.03.2021): 667. http://dx.doi.org/10.3390/electronics10060667.
Der volle Inhalt der QuelleChen, Wei, Guiling Hu, Wenyang Han, Xiaomeng Zhang, Jincheng Wei, Xizhong Xu und Xiangpeng Yan. „Research on the Quality of Asphalt Pavement Construction Based on Nondestructive Testing Technology“. Coatings 12, Nr. 3 (14.03.2022): 379. http://dx.doi.org/10.3390/coatings12030379.
Der volle Inhalt der QuelleCampean, Emilia, Tiberiu Pavel Itul, Ionela Tanase und Adrian Pisla. „Workspace Generation for a 2 - DOF Parallel Mechanism Using Neural Networks“. Applied Mechanics and Materials 162 (März 2012): 121–30. http://dx.doi.org/10.4028/www.scientific.net/amm.162.121.
Der volle Inhalt der QuelleUrata, Katia, Josaphat Tetuko, Cahya E. Santosa und Tor Viscor. „Development of an L-Band SAR Microsatellite Antenna for Earth Observation“. Aerospace 5, Nr. 4 (17.12.2018): 128. http://dx.doi.org/10.3390/aerospace5040128.
Der volle Inhalt der QuelleGao, Lan, Chiara Dachena, Kaijun Wu, Alessandro Fedeli, Matteo Pastorino, Andrea Randazzo, Xiaoping Wu und Sébastien Lambot. „Full-Wave Modeling and Inversion of UWB Radar Data for Wave Propagation in Cylindrical Objects“. Remote Sensing 13, Nr. 12 (17.06.2021): 2370. http://dx.doi.org/10.3390/rs13122370.
Der volle Inhalt der QuelleZhai, Shao Xiong. „Research on Drive Control Method of Scanning Mechanism of Radar Scatterometer Antenna“. Advanced Materials Research 139-141 (Oktober 2010): 1605–11. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1605.
Der volle Inhalt der QuelleDelgado, Alfredo, Alexandre Novo und Dirk B. Hays. „Data Acquisition Methodologies Utilizing Ground Penetrating Radar for Cassava (Manihot esculenta Crantz) Root Architecture“. Geosciences 9, Nr. 4 (15.04.2019): 171. http://dx.doi.org/10.3390/geosciences9040171.
Der volle Inhalt der QuelleIvashov, Sergey I., Lorenzo Capineri, Timothy D. Bechtel, Vladimir V. Razevig, Masaharu Inagaki, Nikolay L. Gueorguiev und Ahmet Kizilay. „Design and Applications of Multi-Frequency Holographic Subsurface Radar: Review and Case Histories“. Remote Sensing 13, Nr. 17 (02.09.2021): 3487. http://dx.doi.org/10.3390/rs13173487.
Der volle Inhalt der QuelleSchwäbig, Christopher, Siying Wang und Sabine Gütgemann. „Development of a millimetre wave based SAR real-time imaging system for three-dimensional non-destructive testing“. tm - Technisches Messen 88, Nr. 7-8 (24.06.2021): 488–97. http://dx.doi.org/10.1515/teme-2021-0029.
Der volle Inhalt der QuelleDérobert, Xavier, Vincent Baltazart, Jean-Michel Simonin, Shreedhar Savant Todkar, Christophe Norgeot und Ho-Yan Hui. „GPR Monitoring of Artificial Debonded Pavement Structures throughout Its Life Cycle during Accelerated Pavement Testing“. Remote Sensing 13, Nr. 8 (11.04.2021): 1474. http://dx.doi.org/10.3390/rs13081474.
Der volle Inhalt der QuelleKauffmann, Jens, Ganesh Rajagopalan, Kazunori Akiyama, Vincent Fish, Colin Lonsdale, Lynn D. Matthews und Thushara Pillai. „The Haystack Telescope as an Astronomical Instrument“. Galaxies 11, Nr. 1 (04.01.2023): 9. http://dx.doi.org/10.3390/galaxies11010009.
Der volle Inhalt der QuelleWidodo, Widodo, Kurnia Anwar Ra’if, Muhammad Aldi Firdaus und Ibnu Thoriq Hidayatullah. „GMODL: An Indonesian MATLAB-based ground-penetrating radar data modeling and processing software“. IOP Conference Series: Earth and Environmental Science 1031, Nr. 1 (01.05.2022): 012026. http://dx.doi.org/10.1088/1755-1315/1031/1/012026.
Der volle Inhalt der QuelleTatu, Serioja Ovidiu, und Emilia Moldovan. „Millimeter Wave Multi-Port Interferometric Radar Sensors: Evolution of Fabrication and Characterization Technologies“. Sensors 20, Nr. 19 (24.09.2020): 5477. http://dx.doi.org/10.3390/s20195477.
Der volle Inhalt der QuelleDarnitskyi, Y., V. Lyashenko, S. Shvets und T. Pavliuk. „ANALYSIS OF PECULIARITIES FOR USE OF MUZZLE VELOCITY MEASUREMENT SYSTEM SL – 520PЕ AND DOPPLER RADAR TRAJECTORY MEASUREMENT SYSTEM MFTR–2100/40 DURING TESTS OF ROCKET AND ARTILLERY ARMAMENT“. Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, Nr. 12 (05.07.2022): 29–40. http://dx.doi.org/10.37701/dndivsovt.12.2022.04.
Der volle Inhalt der QuelleWahab, S. W., D. N. Chapman, C. D. F. Rogers, K. Y. Foo, N. Metje, S. W. Nawawi, M. N. Isa und A. Madun. „ASSESSING THE CONDITION OF BURIED PIPE USING GROUND PENETRATING RADAR (GPR)“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W9 (26.10.2018): 77–81. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w9-77-2018.
Der volle Inhalt der QuelleZou, Lilong, Yan Wang, Iraklis Giannakis, Fabio Tosti, Amir M. Alani und Motoyuki Sato. „Mapping and Assessment of Tree Roots Using Ground Penetrating Radar with Low-Cost GPS“. Remote Sensing 12, Nr. 8 (20.04.2020): 1300. http://dx.doi.org/10.3390/rs12081300.
Der volle Inhalt der QuellePalandro, David, Tim Nedwed, Steve Altobelli, Eiichi Fukushima, Mark Conradi, Nick Sowko und Erik DeMicco. „Oil in and under Ice Detection using Nuclear Magnetic Resonance“. International Oil Spill Conference Proceedings 2017, Nr. 1 (01.05.2017): 1877–89. http://dx.doi.org/10.7901/2169-3358-2017.1.1877.
Der volle Inhalt der QuelleSchouten, Girmi, Wouter Jansen und Jan Steckel. „Simulation of Pulse-Echo Radar for Vehicle Control and SLAM“. Sensors 21, Nr. 2 (13.01.2021): 523. http://dx.doi.org/10.3390/s21020523.
Der volle Inhalt der QuelleJoo, Jeong-Myeong, Jin-Young Hong, Sang-Jin Shin, Dong-Hyeon Kim und Yisok Oh. „Effects of Antenna Modeling in 2-D FDTD Simulation of an Ultra-Wide Band Radar for Nondestructive Testing of a Concrete Wall“. Journal of Korean Institute of Electromagnetic Engineering and Science 24, Nr. 1 (30.01.2013): 98–105. http://dx.doi.org/10.5515/kjkiees.2013.24.1.98.
Der volle Inhalt der Quelle