Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Radar Antennas Testing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Radar Antennas Testing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Radar Antennas Testing"
Wang, Bin, Shunan Wang, Dan Zeng und Min Wang. „Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition“. Electronics 11, Nr. 9 (26.04.2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Der volle Inhalt der QuelleWang, Bin, Shunan Wang, Dan Zeng und Min Wang. „Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition“. Electronics 11, Nr. 9 (26.04.2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Der volle Inhalt der QuelleWang, Bin, Shunan Wang, Dan Zeng und Min Wang. „Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition“. Electronics 11, Nr. 9 (26.04.2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Der volle Inhalt der QuelleMARUDDANI, BASO, EFRI SANDI EFRI SANDI und MUHAMMAD FADHIL NAUFAL SALAM. „Perancangan dan Optimasi Antena Vivaldi pada Sistem Radar Penembus Permukaan (Ground Penetrating Radar)“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 7, Nr. 1 (24.01.2019): 151. http://dx.doi.org/10.26760/elkomika.v7i1.151.
Der volle Inhalt der QuelleChipengo, Ushemadzoro, Peter M. Krenz und Shawn Carpenter. „From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Corner Case Simulation“. Modelling and Simulation in Engineering 2018 (27.12.2018): 1–19. http://dx.doi.org/10.1155/2018/4239725.
Der volle Inhalt der QuelleBernatek-Jakiel, Anita, und Marta Kondracka. „Detection of Soil Pipes Using Ground Penetrating Radar“. Remote Sensing 11, Nr. 16 (09.08.2019): 1864. http://dx.doi.org/10.3390/rs11161864.
Der volle Inhalt der QuelleLangston, Glen. „NRAO 43-m telescope operation at 170-1700 MHz: a Bi-Static Radar Collaboration“. Proceedings of the International Astronomical Union 2, Nr. 14 (August 2006): 367. http://dx.doi.org/10.1017/s1743921307011015.
Der volle Inhalt der QuelleGalajda, Pavol, Alena Galajdova, Stanislav Slovak, Martin Pecovsky, Milos Drutarovsky, Marek Sukop und Ihab BA Samaneh. „Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments“. International Journal of Advanced Robotic Systems 15, Nr. 4 (01.07.2018): 172988141879576. http://dx.doi.org/10.1177/1729881418795767.
Der volle Inhalt der QuellePryshchenko, Oleksandr A., Vadym Plakhtii, Oleksandr M. Dumin, Gennadiy P. Pochanin, Vadym P. Ruban, Lorenzo Capineri und Fronefield Crawford. „Implementation of an Artificial Intelligence Approach to GPR Systems for Landmine Detection“. Remote Sensing 14, Nr. 17 (05.09.2022): 4421. http://dx.doi.org/10.3390/rs14174421.
Der volle Inhalt der QuelleAjith, K. K., und Amitabha Bhattacharya. „Improving the GPR Detectability Using a Novel Loop Bowtie Antenna“. Journal of Telecommunications and Information Technology, Nr. 3 (2017): 9–16. http://dx.doi.org/10.26636/jtit.2017.120917.
Der volle Inhalt der QuelleDissertationen zum Thema "Radar Antennas Testing"
Chong, Aaron A. „Complementary GPR antennas and watertank testing /“. St. Lucia, Qld, 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16096.pdf.
Der volle Inhalt der QuelleEsswein, Lance C. „Genetic algorithm design and testing of a random element 3-D 2.4 GHZ phased array transmit antenna constructed of commercial RF microchips“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FEsswein.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Michael Melich, David Jenn, Rodney Johnson. Includes bibliographical references (p. 113-115). Also available online.
May, Peter T. „VHF radar studies of the troposphere /“. Title page, contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm4666.pdf.
Der volle Inhalt der QuelleChoudhary, Vipin. „Nondestructive testing and antenna measurements using UWB radar in industrial applications“. Licentiate thesis, KTH, Teknisk informationsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291129.
Der volle Inhalt der QuelleMånga branscher ersätter snabbt de manuella testoperationerna och går mot automatiserad drift med modern teknik. Modern teknik såsom digitalkameror, soniska sensorer, infraröda sensorer och radar och lidarsystem används för i icke-förstörande tester. Bland alla olika sensorerhar radarsystem förmågan att tränga igenom byggda strukturer (dielektriskmaterial), vilket gör dem flexibla och lämpliga för ett brettspektrum av industriella och militära applikationer vid icke-förstörande avkänning. Sådana exempel är upptäckt av skador vid tillverkning av varor, övervakning av hälsa hos många strukturer, detektering av objekt genom väggen av säkerhetsskäl etc. Speciellt är radarsystem med ultrabredband (UWB) fördelaktiga då de ger hög mätnoggrannhet och samtidigt minskad känslighet mot passiva störningar (såsom regn, rök,dimma etc.), och immunitet mot yttre strålning och buller. Syftet med denna avhandling är : I) att undersöka elektriskt små dolda struktur med syntetisk bländaradar (SAR), II) att bestämma komplex brytningsindex för objekt som använder UWB radarsystem, ochIII) att svar på frågan hur vi kan minska den ömsesidiga kopplingen(överhörning) i ett UWB radarsystem med sändar- och mottagarantenner nära varandra. I mål I, är målet icke-förstörande provning avbyggda struktures såsom vid tillverkning av betongplattor eller vid renovering. I tillägg kunde inte elektriskt små strukturer och deras inre struktur urskiljas i konventionella SAR-bilder. Den föreslagna polarimetriskaanalysmetoden visar på hur användbar singulärvärdesuppdelning(SVD) med bakåtprojektion (BPA) är för att få information om och för att klassificera elektriskt små objekt.Vidare i denna avhandling visas för mål II en ny metod för att bestämma komplexa brytningsindex (eller motsvarande komplexa relativa permittiviteten) hos objekt med plana ytor. Den föreslagna metoden är relativt okänslig för svagheter hos hårdvaran, såsom frekvensberoende hos antennener och analog front-end. Objekten kan vara av ändlig storlek och på ändligt avstånd. Begränsningarna i storlek och avstånd för metoden att vara giltig undersöktes experimentellt. Sålunda är metoden utformad för industriella mätningar på föremål på transportband. I de följande delarna av avhandlingen - mål III - undersöker och visar vi dessutom hur en absorbator för mikrovågor, baserad på metamaterial, kan användas för att förbättra prestanda hos ett radarsystem för korta avstånd, när absorbatorn placeras mellan sändar- och mottagantenner. Resultatet blir att felet i det bestämda avståndet till målet minskar och undertryckning av klotter ökar.
QC 20210309
Sterne, Kevin Tyler. „Testing the Re-designed SuperDARN HF Radar and Modeling of a Twin Terminated Folded Dipole Array“. Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32239.
Der volle Inhalt der QuelleMaster of Science
Ben, Abdallah Rayen. „Statistical signal processing exploiting low-rank priors with applications to detection in Heterogeneous Environment“. Thesis, Paris 10, 2019. http://www.theses.fr/2019PA100076.
Der volle Inhalt der QuelleIn this thesis, we consider first the problem of low dimensional signal subspace estimation in a Bayesian context. We focus on compound Gaussian signals embedded in white Gaussian noise, which is a realistic modeling for various array processing applications. Following the Bayesian framework, we derive algorithms to compute both the maximum a posteriori and the so-called minimum mean square distance estimator, which minimizes the average natural distance between the true range space of interest and its estimate. Such approaches have shown their interests for signal subspace estimation in the small sample support and/or low signal to noise ratio contexts. As a byproduct, we also introduce a generalized version of the complex Bingham Langevin distribution in order to model the prior on the subspace orthonormal basis. Numerical simulations illustrate the performance of the proposed algorithms. Then, a practical example of Bayesian prior design is presented for the purpose of radar detection.Second, we aim to test common properties between low rank structured covariance matrices.Indeed, this hypothesis testing has been shown to be a relevant approach for change and/oranomaly detection in synthetic aperture radar images. While the term similarity usually refersto equality or proportionality, we explore the testing of shared properties in the structure oflow rank plus identity covariance matrices, which are appropriate for radar processing. Specifically,we derive generalized likelihood ratio tests to infer i) on the equality/proportionality ofthe low rank signal component of covariance matrices, and ii) on the equality of the signalsubspace component of covariance matrices. The formulation of the second test involves nontrivialoptimization problems for which we tailor ecient Majorization-Minimization algorithms.Eventually, the proposed detection methods enjoy interesting properties, that are illustrated on simulations and on an application to real data for change detection
May, Peter T. „VHF radar studies of the troposphere / by Peter T. May“. Thesis, 1986. http://hdl.handle.net/2440/20636.
Der volle Inhalt der QuelleGrant, Stephen Ian. „Medium frequency radar studies of meteors“. 2003. http://thesis.library.adelaide.edu.au/public/adt-SUA20040224.152811.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Radar Antennas Testing"
Guidi, Rodolfo, Antonio Sarri, Luca Fiori und Andreina Armogida. „An optimized radar reflector antenna pair for field testing“. In 2012 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2012. http://dx.doi.org/10.1109/lapc.2012.6403050.
Der volle Inhalt der QuelleIversen, P., M. Boumans und S. Burgos. „Mini compact range for automotive radar antenna testing“. In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206672.
Der volle Inhalt der QuelleKedzia, Jean-Claude, Philippe de Souza und Dominique Gruyer. „Advanced RADAR sensors modeling for driving assistance systems testing“. In 2016 10th European Conference on Antennas and Propagation (EuCAP). IEEE, 2016. http://dx.doi.org/10.1109/eucap.2016.7481398.
Der volle Inhalt der QuellePorter, Emily, Adam Santorelli und Milica Popovic. „Time-domain microwave radar for breast screening: Initial testing with volunteers“. In 2014 8th European Conference on Antennas and Propagation (EuCAP). IEEE, 2014. http://dx.doi.org/10.1109/eucap.2014.6901703.
Der volle Inhalt der QuellePeng, Gang, Tao Hong, Minghua Xue und Jinjun Tian. „New Method of Velocity Compensation in a Stepped-Frequency Testing Radar“. In 2006 7th International Symposium on Antennas, Propagation & EM Theory. IEEE, 2006. http://dx.doi.org/10.1109/isape.2006.353264.
Der volle Inhalt der QuelleSalazar-Cerreno, Jorge L., Syed S. Jehangir, Antony Segales, Nafati Aboserwal und Zeeshan Qamar. „An Ultrawideband UAV-Based Metrology Platform for In-situ EM Testing of Antennas, Radars, and Communication Systems“. In 2022 IEEE Radar Conference (RadarConf22). IEEE, 2022. http://dx.doi.org/10.1109/radarconf2248738.2022.9764263.
Der volle Inhalt der QuelleChong, Aaron A., Christopher J. Leat und Glen F. Stickley. „Gain, impedance measurements, and dielectric loading of ground penetrating radar (GPR) antennas using a watertank testing facility“. In 8th International Conference on Ground Penetrating Radar, herausgegeben von David A. Noon, Glen F. Stickley und Dennis Longstaff. SPIE, 2000. http://dx.doi.org/10.1117/12.383545.
Der volle Inhalt der QuelleYounp-Jin Park, Sung-Bae Cho, Kwan-Ho Kim und Dong-Gi Youn. „Development of an ultra wideband ground penetrating radar (UWB GPR) for nondestructive testing of underground objects“. In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330418.
Der volle Inhalt der QuelleRocha, Carlos Junio, Renato Ribeiro, Pedro Miguel Cruz und Paula Viana. „Automatized Solution for Over-the-Air (OTA) Testing and Validation of Automotive Radar Sensors“. In 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2019. http://dx.doi.org/10.1109/apwc.2019.8870448.
Der volle Inhalt der QuelleDonovan, William, David Mueller, Erik Runge und W. Liu. „Structural Design, Analysis, and Testing of Vivaldi Ground Penetrating Radar Antennas for the Meridian UAS“. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1832.